Group action invariants
| Degree $n$ : | $15$ | |
| Transitive number $t$ : | $24$ | |
| Group : | $S_5 \times C_3$ | |
| CHM label : | $S(5)[x]3$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,4)(6,9)(11,14), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15) | |
| $|\Aut(F/K)|$: | $3$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 6: $C_6$ 120: $S_5$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $C_3$
Degree 5: $S_5$
Low degree siblings
18T144, 30T90, 30T98, 30T103, 36T550, 45T44Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $10$ | $2$ | $( 4,10)( 5,14)( 9,15)$ |
| $ 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $20$ | $3$ | $( 3, 9,15)( 4,10,13)( 5, 8,14)$ |
| $ 4, 4, 4, 1, 1, 1 $ | $30$ | $4$ | $( 2, 5, 8,14)( 3, 9,12,15)( 4, 7,10,13)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1 $ | $15$ | $2$ | $( 2, 5)( 3, 9)( 4,13)( 7,10)( 8,14)(12,15)$ |
| $ 6, 3, 3, 3 $ | $20$ | $6$ | $( 1, 2, 3)( 4, 5, 9,10,14,15)( 6, 7, 8)(11,12,13)$ |
| $ 3, 3, 3, 3, 3 $ | $20$ | $3$ | $( 1, 2, 3)( 4,14, 9)( 5,15,10)( 6, 7, 8)(11,12,13)$ |
| $ 15 $ | $24$ | $15$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15)$ |
| $ 12, 3 $ | $30$ | $12$ | $( 1, 2, 3, 4,11,12,13,14, 6, 7, 8, 9)( 5,15,10)$ |
| $ 6, 6, 3 $ | $15$ | $6$ | $( 1, 2, 6, 7,11,12)( 3, 4, 8, 9,13,14)( 5,15,10)$ |
| $ 6, 3, 3, 3 $ | $10$ | $6$ | $( 1, 2, 6, 7,11,12)( 3,13, 8)( 4,14, 9)( 5,15,10)$ |
| $ 3, 3, 3, 3, 3 $ | $20$ | $3$ | $( 1, 3, 2)( 4, 9,14)( 5,10,15)( 6, 8, 7)(11,13,12)$ |
| $ 6, 3, 3, 3 $ | $20$ | $6$ | $( 1, 3, 2)( 4,15,14,10, 9, 5)( 6, 8, 7)(11,13,12)$ |
| $ 12, 3 $ | $30$ | $12$ | $( 1, 3, 5, 7, 6, 8,10,12,11,13,15, 2)( 4, 9,14)$ |
| $ 15 $ | $24$ | $15$ | $( 1, 3, 5, 4,12,11,13,15,14, 7, 6, 8,10, 9, 2)$ |
| $ 6, 6, 3 $ | $15$ | $6$ | $( 1, 3,11,13, 6, 8)( 2, 4,12,14, 7, 9)( 5,10,15)$ |
| $ 6, 3, 3, 3 $ | $10$ | $6$ | $( 1, 3,11,13, 6, 8)( 2, 7,12)( 4, 9,14)( 5,10,15)$ |
| $ 5, 5, 5 $ | $24$ | $5$ | $( 1, 4, 7,10,13)( 2, 5, 8,11,14)( 3, 6, 9,12,15)$ |
| $ 3, 3, 3, 2, 2, 2 $ | $20$ | $6$ | $( 1, 4,13)( 2, 5)( 3, 6, 9)( 7,10)( 8,11,14)(12,15)$ |
| $ 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 6,11)( 2, 7,12)( 3, 8,13)( 4, 9,14)( 5,10,15)$ |
| $ 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1,11, 6)( 2,12, 7)( 3,13, 8)( 4,14, 9)( 5,15,10)$ |
Group invariants
| Order: | $360=2^{3} \cdot 3^{2} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | [360, 119] |
| Character table: Data not available. |