Group action invariants
| Degree $n$ : | $15$ | |
| Transitive number $t$ : | $23$ | |
| Group : | $A_5 \times S_3$ | |
| CHM label : | $A(5)[x]S(3)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,11)(2,7)(4,14)(5,10)(8,13), (1,13)(2,14)(3,6)(4,7)(8,11)(9,12), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 6: $S_3$ 60: $A_5$ 120: $A_5\times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $S_3$
Degree 5: $A_5$
Low degree siblings
18T145, 30T85, 30T94, 30T102, 36T551, 36T552, 36T553, 45T40Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $20$ | $3$ | $( 3, 9,15)( 4,10,13)( 5, 8,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 1 $ | $45$ | $2$ | $( 2, 3)( 4,10)( 5, 9)( 6,11)( 7,13)( 8,12)(14,15)$ |
| $ 6, 3, 2, 2, 1, 1 $ | $60$ | $6$ | $( 2, 3, 5,12, 8,15)( 6,11)( 7,13,10)( 9,14)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1 $ | $15$ | $2$ | $( 2, 5)( 3, 9)( 4,13)( 7,10)( 8,14)(12,15)$ |
| $ 2, 2, 2, 2, 2, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 2,12)( 3, 8)( 5,15)( 6,11)( 9,14)$ |
| $ 3, 3, 3, 3, 3 $ | $40$ | $3$ | $( 1, 2, 3)( 4,14, 9)( 5,15,10)( 6, 7, 8)(11,12,13)$ |
| $ 15 $ | $24$ | $15$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15)$ |
| $ 15 $ | $24$ | $15$ | $( 1, 2, 3,10,14, 6, 7, 8,15, 4,11,12,13, 5, 9)$ |
| $ 10, 5 $ | $36$ | $10$ | $( 1, 2, 4, 5,13,11, 7,14,10, 8)( 3, 6,12, 9,15)$ |
| $ 10, 5 $ | $36$ | $10$ | $( 1, 2, 4, 8,10,11, 7,14,13, 5)( 3,15, 6,12, 9)$ |
| $ 6, 6, 3 $ | $30$ | $6$ | $( 1, 2, 6, 7,11,12)( 3, 4, 8, 9,13,14)( 5,15,10)$ |
| $ 5, 5, 5 $ | $12$ | $5$ | $( 1, 4, 7,10,13)( 2, 5, 8,11,14)( 3, 6, 9,12,15)$ |
| $ 5, 5, 5 $ | $12$ | $5$ | $( 1, 4,10, 7,13)( 2, 8,11,14, 5)( 3, 6, 9,15,12)$ |
| $ 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 6,11)( 2, 7,12)( 3, 8,13)( 4, 9,14)( 5,10,15)$ |
Group invariants
| Order: | $360=2^{3} \cdot 3^{2} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | [360, 121] |
| Character table: |
2 3 1 3 1 3 3 . . . 1 1 2 1 1 2
3 2 2 . 1 1 1 2 1 1 . . 1 1 1 2
5 1 . . . . 1 . 1 1 1 1 . 1 1 1
1a 3a 2a 6a 2b 2c 3b 15a 15b 10a 10b 6b 5a 5b 3c
2P 1a 3a 1a 3a 1a 1a 3b 15b 15a 5a 5b 3c 5b 5a 3c
3P 1a 1a 2a 2c 2b 2c 1a 5a 5b 10b 10a 2b 5b 5a 1a
5P 1a 3a 2a 6a 2b 2c 3b 3c 3c 2c 2c 6b 1a 1a 3c
7P 1a 3a 2a 6a 2b 2c 3b 15b 15a 10b 10a 6b 5b 5a 3c
11P 1a 3a 2a 6a 2b 2c 3b 15a 15b 10a 10b 6b 5a 5b 3c
13P 1a 3a 2a 6a 2b 2c 3b 15b 15a 10b 10a 6b 5b 5a 3c
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 -1 -1 1 -1 1 1 1 -1 -1 1 1 1 1
X.3 2 2 . . 2 . -1 -1 -1 . . -1 2 2 -1
X.4 3 . 1 . -1 -3 . A *A -A -*A -1 *A A 3
X.5 3 . 1 . -1 -3 . *A A -*A -A -1 A *A 3
X.6 3 . -1 . -1 3 . A *A A *A -1 *A A 3
X.7 3 . -1 . -1 3 . *A A *A A -1 A *A 3
X.8 4 1 . -1 . -4 1 -1 -1 1 1 . -1 -1 4
X.9 4 1 . 1 . 4 1 -1 -1 -1 -1 . -1 -1 4
X.10 5 -1 -1 1 1 -5 -1 . . . . 1 . . 5
X.11 5 -1 1 -1 1 5 -1 . . . . 1 . . 5
X.12 6 . . . -2 . . -A -*A . . 1 B *B -3
X.13 6 . . . -2 . . -*A -A . . 1 *B B -3
X.14 8 2 . . . . -1 1 1 . . . -2 -2 -4
X.15 10 -2 . . 2 . 1 . . . . -1 . . -5
A = -E(5)^2-E(5)^3
= (1+Sqrt(5))/2 = 1+b5
B = -2*E(5)-2*E(5)^4
= 1-Sqrt(5) = 1-r5
|