Group action invariants
| Degree $n$ : | $15$ | |
| Transitive number $t$ : | $21$ | |
| Group : | $\GL(2,4):C_2$ | |
| CHM label : | $3S_{5}(15)$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,9,10,3,14)(2,15,7,12,6)(4,5,11,13,8), (1,2,15)(4,5,6)(8,9,10)(12,13,14), (1,4,10)(2,5,8)(3,7,11)(6,9,15)(12,14,13), (1,4)(2,6)(3,7)(5,15)(8,9)(12,13) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 6: $S_3$ 120: $S_5$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: None
Degree 5: $S_5$
Low degree siblings
15T21, 15T22, 18T146, 30T89, 30T93 x 2, 30T101, 36T554, 45T45Siblings are shown with degree $\leq 47$
A number field with this Galois group has exactly one arithmetically equivalent field.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1 $ | $30$ | $2$ | $( 3,15)( 4, 9)( 5,11)( 6, 8)( 7,10)(13,14)$ |
| $ 3, 3, 3, 3, 1, 1, 1 $ | $40$ | $3$ | $( 2, 3,15)( 4, 7, 5)( 9,11,10)(12,13,14)$ |
| $ 4, 4, 4, 2, 1 $ | $90$ | $4$ | $( 2, 5,12,11)( 3, 9,10,14)( 4,15,13, 7)( 6, 8)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1 $ | $15$ | $2$ | $( 2, 5)( 3,13)( 4,10)( 7,14)( 9,15)(11,12)$ |
| $ 15 $ | $24$ | $15$ | $( 1, 2, 5, 3,12, 8, 9,15,11,14, 6, 4,10, 7,13)$ |
| $ 6, 6, 3 $ | $60$ | $6$ | $( 1, 2, 6, 9, 8, 4)( 3,10,12,11,15,14)( 5,13, 7)$ |
| $ 6, 6, 3 $ | $30$ | $6$ | $( 1, 2, 6, 4, 8, 9)( 3,14, 7,12,11,13)( 5,15,10)$ |
| $ 5, 5, 5 $ | $24$ | $5$ | $( 1, 2, 7,14, 5)( 3,13,15, 8, 9)( 4,11,12,10, 6)$ |
| $ 3, 3, 3, 3, 3 $ | $20$ | $3$ | $( 1, 2,12)( 3,11, 7)( 4,13, 6)( 5,10,15)( 8, 9,14)$ |
| $ 15 $ | $24$ | $15$ | $( 1, 2,13, 5,11, 6, 4,14,10, 3, 8, 9,12,15, 7)$ |
| $ 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 6, 8)( 2, 4, 9)( 3, 7,11)( 5,10,15)(12,13,14)$ |
Group invariants
| Order: | $360=2^{3} \cdot 3^{2} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | [360, 120] |
| Character table: |
2 3 2 . 2 3 . 1 2 . 1 . 2
3 2 1 2 . 1 1 1 1 1 2 1 2
5 1 . . . . 1 . . 1 . 1 1
1a 2a 3a 4a 2b 15a 6a 6b 5a 3b 15b 3c
2P 1a 1a 3a 2b 1a 15a 3b 3c 5a 3b 15b 3c
3P 1a 2a 1a 4a 2b 5a 2a 2b 5a 1a 5a 1a
5P 1a 2a 3a 4a 2b 3c 6a 6b 1a 3b 3c 3c
7P 1a 2a 3a 4a 2b 15b 6a 6b 5a 3b 15a 3c
11P 1a 2a 3a 4a 2b 15b 6a 6b 5a 3b 15a 3c
13P 1a 2a 3a 4a 2b 15b 6a 6b 5a 3b 15a 3c
X.1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 -1 1 1 -1 1 1 1 1 1
X.3 2 . -1 . 2 -1 . -1 2 2 -1 -1
X.4 4 -2 1 . . -1 1 . -1 1 -1 4
X.5 4 2 1 . . -1 -1 . -1 1 -1 4
X.6 5 -1 -1 1 1 . -1 1 . -1 . 5
X.7 5 1 -1 -1 1 . 1 1 . -1 . 5
X.8 6 . . . -2 1 . -2 1 . 1 6
X.9 6 . . . -2 A . 1 1 . /A -3
X.10 6 . . . -2 /A . 1 1 . A -3
X.11 8 . -1 . . 1 . . -2 2 1 -4
X.12 10 . 1 . 2 . . -1 . -2 . -5
A = -E(15)-E(15)^2-E(15)^4-E(15)^8
= (-1-Sqrt(-15))/2 = -1-b15
|