Group action invariants
| Degree $n$ : | $15$ | |
| Transitive number $t$ : | $2$ | |
| Group : | $D_{15}$ | |
| CHM label : | $D(15)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,14)(2,13)(3,12)(4,11)(5,10)(6,9)(7,8), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 6: $S_3$ 10: $D_{5}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $S_3$
Degree 5: $D_{5}$
Low degree siblings
30T3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 1 $ | $15$ | $2$ | $( 2,15)( 3,14)( 4,13)( 5,12)( 6,11)( 7,10)( 8, 9)$ |
| $ 15 $ | $2$ | $15$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15)$ |
| $ 15 $ | $2$ | $15$ | $( 1, 3, 5, 7, 9,11,13,15, 2, 4, 6, 8,10,12,14)$ |
| $ 5, 5, 5 $ | $2$ | $5$ | $( 1, 4, 7,10,13)( 2, 5, 8,11,14)( 3, 6, 9,12,15)$ |
| $ 15 $ | $2$ | $15$ | $( 1, 5, 9,13, 2, 6,10,14, 3, 7,11,15, 4, 8,12)$ |
| $ 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 6,11)( 2, 7,12)( 3, 8,13)( 4, 9,14)( 5,10,15)$ |
| $ 5, 5, 5 $ | $2$ | $5$ | $( 1, 7,13, 4,10)( 2, 8,14, 5,11)( 3, 9,15, 6,12)$ |
| $ 15 $ | $2$ | $15$ | $( 1, 8,15, 7,14, 6,13, 5,12, 4,11, 3,10, 2, 9)$ |
Group invariants
| Order: | $30=2 \cdot 3 \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [30, 3] |
| Character table: |
2 1 1 . . . . . . .
3 1 . 1 1 1 1 1 1 1
5 1 . 1 1 1 1 1 1 1
1a 2a 15a 15b 5a 15c 3a 5b 15d
2P 1a 1a 15b 15c 5b 15d 3a 5a 15a
3P 1a 2a 5a 5b 5b 5a 1a 5a 5b
5P 1a 2a 3a 3a 1a 3a 3a 1a 3a
7P 1a 2a 15d 15a 5b 15b 3a 5a 15c
11P 1a 2a 15c 15d 5a 15a 3a 5b 15b
13P 1a 2a 15b 15c 5b 15d 3a 5a 15a
X.1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 1 1 1 1 1 1
X.3 2 . -1 -1 2 -1 -1 2 -1
X.4 2 . A *A *A A 2 A *A
X.5 2 . *A A A *A 2 *A A
X.6 2 . B E A D -1 *A C
X.7 2 . C B *A E -1 A D
X.8 2 . D C A B -1 *A E
X.9 2 . E D *A C -1 A B
A = E(5)^2+E(5)^3
= (-1-Sqrt(5))/2 = -1-b5
B = E(15)^7+E(15)^8
C = E(15)^4+E(15)^11
D = E(15)^2+E(15)^13
E = E(15)+E(15)^14
|