Group action invariants
| Degree $n$ : | $15$ | |
| Transitive number $t$ : | $19$ | |
| Group : | $(C_5^2 : C_4):C_3$ | |
| CHM label : | $[5^{2}:4]3$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,13,10,7,4)(2,5,8,11,14), (1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10,15), (1,7,4,13)(2,14,8,11)(3,6,12,9) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 4: $C_4$ 6: $C_6$ 12: $C_{12}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $C_3$
Degree 5: None
Low degree siblings
15T19, 25T26, 30T78 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1 $ | $25$ | $2$ | $( 3, 6)( 4,13)( 5,14)( 7,10)( 8,11)( 9,15)$ |
| $ 4, 4, 4, 1, 1, 1 $ | $25$ | $4$ | $( 3, 9, 6,15)( 4, 7,13,10)( 5, 8,14,11)$ |
| $ 4, 4, 4, 1, 1, 1 $ | $25$ | $4$ | $( 3,15, 6, 9)( 4,10,13, 7)( 5,11,14, 8)$ |
| $ 5, 5, 1, 1, 1, 1, 1 $ | $12$ | $5$ | $( 2, 5, 8,11,14)( 3,15,12, 9, 6)$ |
| $ 3, 3, 3, 3, 3 $ | $25$ | $3$ | $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,11,12)(13,14,15)$ |
| $ 6, 6, 3 $ | $25$ | $6$ | $( 1, 2, 3, 4,14, 6)( 5,15, 7,11, 9,13)( 8,12,10)$ |
| $ 12, 3 $ | $25$ | $12$ | $( 1, 2, 3, 7,14,12,10, 5, 9, 4, 8,15)( 6,13,11)$ |
| $ 12, 3 $ | $25$ | $12$ | $( 1, 2, 3,13, 8, 6, 7, 5,12,10,14, 9)( 4,11,15)$ |
| $ 3, 3, 3, 3, 3 $ | $25$ | $3$ | $( 1, 3, 2)( 4, 6, 5)( 7, 9, 8)(10,12,11)(13,15,14)$ |
| $ 6, 6, 3 $ | $25$ | $6$ | $( 1, 3, 5,13, 6, 2)( 4,15, 8,10, 9,14)( 7,12,11)$ |
| $ 12, 3 $ | $25$ | $12$ | $( 1, 3, 8,13,12,11, 4, 9, 5, 7,15, 2)( 6,14,10)$ |
| $ 12, 3 $ | $25$ | $12$ | $( 1, 3,14, 7, 6, 8, 4,12,11,13, 9, 2)( 5,10,15)$ |
| $ 5, 5, 5 $ | $12$ | $5$ | $( 1, 4, 7,10,13)( 2, 5, 8,11,14)( 3,12, 6,15, 9)$ |
Group invariants
| Order: | $300=2^{2} \cdot 3 \cdot 5^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [300, 24] |
| Character table: |
2 2 2 2 2 . 2 2 2 2 2 2 2 2 .
3 1 1 1 1 . 1 1 1 1 1 1 1 1 .
5 2 . . . 2 . . . . . . . . 2
1a 2a 4a 4b 5a 3a 6a 12a 12b 3b 6b 12c 12d 5b
2P 1a 1a 2a 2a 5a 3b 3b 6b 6b 3a 3a 6a 6a 5b
3P 1a 2a 4b 4a 5a 1a 2a 4b 4a 1a 2a 4b 4a 5b
5P 1a 2a 4a 4b 1a 3b 6b 12c 12d 3a 6a 12a 12b 1a
7P 1a 2a 4b 4a 5a 3a 6a 12b 12a 3b 6b 12d 12c 5b
11P 1a 2a 4b 4a 5a 3b 6b 12d 12c 3a 6a 12b 12a 5b
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 -1 -1 1 1 1 -1 -1 1 1 -1 -1 1
X.3 1 -1 A -A 1 1 -1 A -A 1 -1 A -A 1
X.4 1 -1 -A A 1 1 -1 -A A 1 -1 -A A 1
X.5 1 -1 A -A 1 B -B C -C /B -/B -/C /C 1
X.6 1 -1 A -A 1 /B -/B -/C /C B -B C -C 1
X.7 1 -1 -A A 1 B -B -C C /B -/B /C -/C 1
X.8 1 -1 -A A 1 /B -/B /C -/C B -B -C C 1
X.9 1 1 -1 -1 1 B B -B -B /B /B -/B -/B 1
X.10 1 1 -1 -1 1 /B /B -/B -/B B B -B -B 1
X.11 1 1 1 1 1 B B B B /B /B /B /B 1
X.12 1 1 1 1 1 /B /B /B /B B B B B 1
X.13 12 . . . 2 . . . . . . . . -3
X.14 12 . . . -3 . . . . . . . . 2
A = -E(4)
= -Sqrt(-1) = -i
B = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
C = -E(12)^11
|