Group action invariants
| Degree $n$ : | $15$ | |
| Transitive number $t$ : | $17$ | |
| Group : | $(C_5^2 : C_3):C_4$ | |
| CHM label : | $1/2[5^{2}:4]S(3)$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2,4,8)(3,6,12,9)(5,10)(7,14,13,11), (1,4)(2,8)(3,12)(6,9)(7,13)(11,14), (1,13,10,7,4)(2,5,8,11,14), (1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10,15) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 4: $C_4$ 6: $S_3$ 12: $C_3 : C_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $S_3$
Degree 5: None
Low degree siblings
15T17, 25T28, 30T71 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1 $ | $25$ | $2$ | $( 3, 6)( 4,13)( 5,14)( 7,10)( 8,11)( 9,15)$ |
| $ 4, 4, 4, 2, 1 $ | $75$ | $4$ | $( 2, 3, 8,15)( 4, 7,13,10)( 5, 9)( 6,14,12,11)$ |
| $ 4, 4, 4, 2, 1 $ | $75$ | $4$ | $( 2, 3,14, 9)( 4,10,13, 7)( 5,12,11,15)( 6, 8)$ |
| $ 5, 5, 1, 1, 1, 1, 1 $ | $12$ | $5$ | $( 2, 5, 8,11,14)( 3,15,12, 9, 6)$ |
| $ 3, 3, 3, 3, 3 $ | $50$ | $3$ | $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,11,12)(13,14,15)$ |
| $ 6, 6, 3 $ | $50$ | $6$ | $( 1, 2, 3, 4,14, 6)( 5,15, 7,11, 9,13)( 8,12,10)$ |
| $ 5, 5, 5 $ | $12$ | $5$ | $( 1, 4, 7,10,13)( 2, 5, 8,11,14)( 3,12, 6,15, 9)$ |
Group invariants
| Order: | $300=2^{2} \cdot 3 \cdot 5^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [300, 23] |
| Character table: |
2 2 2 2 2 . 1 1 .
3 1 1 . . . 1 1 .
5 2 . . . 2 . . 2
1a 2a 4a 4b 5a 3a 6a 5b
2P 1a 1a 2a 2a 5a 3a 3a 5b
3P 1a 2a 4b 4a 5a 1a 2a 5b
5P 1a 2a 4a 4b 1a 3a 6a 1a
X.1 1 1 1 1 1 1 1 1
X.2 1 1 -1 -1 1 1 1 1
X.3 1 -1 A -A 1 1 -1 1
X.4 1 -1 -A A 1 1 -1 1
X.5 2 -2 . . 2 -1 1 2
X.6 2 2 . . 2 -1 -1 2
X.7 12 . . . 2 . . -3
X.8 12 . . . -3 . . 2
A = -E(4)
= -Sqrt(-1) = -i
|