Group action invariants
| Degree $n$ : | $15$ | |
| Transitive number $t$ : | $16$ | |
| Group : | $\GL(2,4)$ | |
| CHM label : | $A(5)[x]3$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,13)(2,14)(3,6)(4,7)(8,11)(9,12), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15) | |
| $|\Aut(F/K)|$: | $3$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 3: $C_3$ 60: $A_5$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $C_3$
Degree 5: $A_5$
Low degree siblings
15T15 x 2, 18T90, 30T45, 36T176, 45T16Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $20$ | $3$ | $( 3, 9,15)( 4,10,13)( 5, 8,14)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1 $ | $15$ | $2$ | $( 2, 5)( 3, 9)( 4,13)( 7,10)( 8,14)(12,15)$ |
| $ 3, 3, 3, 3, 3 $ | $20$ | $3$ | $( 1, 2, 3)( 4,14, 9)( 5,15,10)( 6, 7, 8)(11,12,13)$ |
| $ 15 $ | $12$ | $15$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15)$ |
| $ 15 $ | $12$ | $15$ | $( 1, 2, 3,10,14, 6, 7, 8,15, 4,11,12,13, 5, 9)$ |
| $ 6, 6, 3 $ | $15$ | $6$ | $( 1, 2, 6, 7,11,12)( 3, 4, 8, 9,13,14)( 5,15,10)$ |
| $ 3, 3, 3, 3, 3 $ | $20$ | $3$ | $( 1, 3, 2)( 4, 9,14)( 5,10,15)( 6, 8, 7)(11,13,12)$ |
| $ 15 $ | $12$ | $15$ | $( 1, 3, 5, 4,12,11,13,15,14, 7, 6, 8,10, 9, 2)$ |
| $ 15 $ | $12$ | $15$ | $( 1, 3,14,10,12,11,13, 9, 5, 7, 6, 8, 4,15, 2)$ |
| $ 6, 6, 3 $ | $15$ | $6$ | $( 1, 3,11,13, 6, 8)( 2, 4,12,14, 7, 9)( 5,10,15)$ |
| $ 5, 5, 5 $ | $12$ | $5$ | $( 1, 4, 7,10,13)( 2, 5, 8,11,14)( 3, 6, 9,12,15)$ |
| $ 5, 5, 5 $ | $12$ | $5$ | $( 1, 4,10, 7,13)( 2, 8,11,14, 5)( 3, 6, 9,15,12)$ |
| $ 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 6,11)( 2, 7,12)( 3, 8,13)( 4, 9,14)( 5,10,15)$ |
| $ 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1,11, 6)( 2,12, 7)( 3,13, 8)( 4,14, 9)( 5,15,10)$ |
Group invariants
| Order: | $180=2^{2} \cdot 3^{2} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | [180, 19] |
| Character table: |
2 2 . 2 . . . 2 . . . 2 . . 2 2
3 2 2 1 2 1 1 1 2 1 1 1 1 1 2 2
5 1 . . . 1 1 . . 1 1 . 1 1 1 1
1a 3a 2a 3b 15a 15b 6a 3c 15c 15d 6b 5a 5b 3d 3e
2P 1a 3a 1a 3c 15d 15c 3d 3b 15b 15a 3e 5b 5a 3e 3d
3P 1a 1a 2a 1a 5a 5b 2a 1a 5a 5b 2a 5b 5a 1a 1a
5P 1a 3a 2a 3c 3d 3d 6b 3b 3e 3e 6a 1a 1a 3e 3d
7P 1a 3a 2a 3b 15b 15a 6a 3c 15d 15c 6b 5b 5a 3d 3e
11P 1a 3a 2a 3c 15c 15d 6b 3b 15a 15b 6a 5a 5b 3e 3d
13P 1a 3a 2a 3b 15b 15a 6a 3c 15d 15c 6b 5b 5a 3d 3e
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 A A A A /A /A /A /A 1 1 /A A
X.3 1 1 1 /A /A /A /A A A A A 1 1 A /A
X.4 3 . -1 . B *B -1 . B *B -1 *B B 3 3
X.5 3 . -1 . *B B -1 . *B B -1 B *B 3 3
X.6 3 . -1 . C /D -A . /C D -/A B *B E /E
X.7 3 . -1 . D /C -/A . /D C -A *B B /E E
X.8 3 . -1 . /D C -A . D /C -/A *B B E /E
X.9 3 . -1 . /C D -/A . C /D -A B *B /E E
X.10 4 1 . 1 -1 -1 . 1 -1 -1 . -1 -1 4 4
X.11 4 1 . /A -/A -/A . A -A -A . -1 -1 F /F
X.12 4 1 . A -A -A . /A -/A -/A . -1 -1 /F F
X.13 5 -1 1 -1 . . 1 -1 . . 1 . . 5 5
X.14 5 -1 1 -/A . . /A -A . . A . . G /G
X.15 5 -1 1 -A . . A -/A . . /A . . /G G
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
B = -E(5)-E(5)^4
= (1-Sqrt(5))/2 = -b5
C = -E(15)-E(15)^4
D = -E(15)^2-E(15)^8
E = 3*E(3)
= (-3+3*Sqrt(-3))/2 = 3b3
F = 4*E(3)^2
= -2-2*Sqrt(-3) = -2-2i3
G = 5*E(3)^2
= (-5-5*Sqrt(-3))/2 = -5-5b3
|