Group action invariants
| Degree $n$ : | $15$ | |
| Transitive number $t$ : | $15$ | |
| Group : | $\GL(2,4)$ | |
| CHM label : | $3A_{5}(15)=[3]A(5)=GL(2,4)$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,9,10,3,14)(2,15,7,12,6)(4,5,11,13,8), (1,2,15)(4,5,6)(8,9,10)(12,13,14), (1,4,10)(2,5,8)(3,7,11)(6,9,15)(12,14,13) | |
| $|\Aut(F/K)|$: | $3$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 3: $C_3$ 60: $A_5$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: None
Degree 5: $A_5$
Low degree siblings
15T15, 15T16, 18T90, 30T45, 36T176, 45T16Siblings are shown with degree $\leq 47$
A number field with this Galois group has exactly one arithmetically equivalent field.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 3, 3, 1, 1, 1 $ | $20$ | $3$ | $( 2, 3,15)( 4, 7, 5)( 9,11,10)(12,13,14)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1 $ | $15$ | $2$ | $( 2, 5)( 3,13)( 4,10)( 7,14)( 9,15)(11,12)$ |
| $ 3, 3, 3, 3, 1, 1, 1 $ | $20$ | $3$ | $( 2, 7,13)( 3,12, 9)( 4,11,14)( 5,15,10)$ |
| $ 15 $ | $12$ | $15$ | $( 1, 2, 5, 3,12, 8, 9,15,11,14, 6, 4,10, 7,13)$ |
| $ 6, 6, 3 $ | $15$ | $6$ | $( 1, 2, 6, 4, 8, 9)( 3,14, 7,12,11,13)( 5,15,10)$ |
| $ 5, 5, 5 $ | $12$ | $5$ | $( 1, 2, 7,14, 5)( 3,13,15, 8, 9)( 4,11,12,10, 6)$ |
| $ 6, 6, 3 $ | $15$ | $6$ | $( 1, 2, 8, 9, 6, 4)( 3, 7,11)( 5,14,15,13,10,12)$ |
| $ 5, 5, 5 $ | $12$ | $5$ | $( 1, 2,10,13,11)( 3, 6, 4,15,14)( 5,12, 7, 8, 9)$ |
| $ 15 $ | $12$ | $15$ | $( 1, 2,11,15,12, 6, 4, 3, 5,13, 8, 9, 7,10,14)$ |
| $ 3, 3, 3, 3, 3 $ | $20$ | $3$ | $( 1, 2,12)( 3,11, 7)( 4,13, 6)( 5,10,15)( 8, 9,14)$ |
| $ 15 $ | $12$ | $15$ | $( 1, 2,13, 5,11, 6, 4,14,10, 3, 8, 9,12,15, 7)$ |
| $ 15 $ | $12$ | $15$ | $( 1, 2,14,11, 5, 8, 9,13, 7,15, 6, 4,12, 3,10)$ |
| $ 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 6, 8)( 2, 4, 9)( 3, 7,11)( 5,10,15)(12,13,14)$ |
| $ 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 8, 6)( 2, 9, 4)( 3,11, 7)( 5,15,10)(12,14,13)$ |
Group invariants
| Order: | $180=2^{2} \cdot 3^{2} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | [180, 19] |
| Character table: |
2 2 . 2 . . 2 . 2 . . . . . 2 2
3 2 2 1 2 1 1 1 1 1 1 2 1 1 2 2
5 1 . . . 1 . 1 . 1 1 . 1 1 1 1
1a 3a 2a 3b 15a 6a 5a 6b 5b 15b 3c 15c 15d 3d 3e
2P 1a 3b 1a 3a 15b 3d 5b 3e 5a 15a 3c 15d 15c 3e 3d
3P 1a 1a 2a 1a 5b 2a 5b 2a 5a 5a 1a 5b 5a 1a 1a
5P 1a 3b 2a 3a 3e 6b 1a 6a 1a 3d 3c 3d 3e 3e 3d
7P 1a 3a 2a 3b 15d 6a 5b 6b 5a 15c 3c 15b 15a 3d 3e
11P 1a 3b 2a 3a 15c 6b 5a 6a 5b 15d 3c 15a 15b 3e 3d
13P 1a 3a 2a 3b 15d 6a 5b 6b 5a 15c 3c 15b 15a 3d 3e
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 A 1 /A /A A 1 /A 1 A 1 A /A /A A
X.3 1 /A 1 A A /A 1 A 1 /A 1 /A A A /A
X.4 3 . -1 . B -1 B -1 *B *B . B *B 3 3
X.5 3 . -1 . *B -1 *B -1 B B . *B B 3 3
X.6 3 . -1 . C -/A *B -A B D . /C /D E /E
X.7 3 . -1 . D -A B -/A *B C . /D /C /E E
X.8 3 . -1 . /D -/A B -A *B /C . D C E /E
X.9 3 . -1 . /C -A *B -/A B /D . C D /E E
X.10 4 1 . 1 -1 . -1 . -1 -1 1 -1 -1 4 4
X.11 4 /A . A -A . -1 . -1 -/A 1 -/A -A F /F
X.12 4 A . /A -/A . -1 . -1 -A 1 -A -/A /F F
X.13 5 -1 1 -1 . 1 . 1 . . -1 . . 5 5
X.14 5 -/A 1 -A . /A . A . . -1 . . G /G
X.15 5 -A 1 -/A . A . /A . . -1 . . /G G
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
B = -E(5)-E(5)^4
= (1-Sqrt(5))/2 = -b5
C = -E(15)-E(15)^4
D = -E(15)^2-E(15)^8
E = 3*E(3)^2
= (-3-3*Sqrt(-3))/2 = -3-3b3
F = 4*E(3)^2
= -2-2*Sqrt(-3) = -2-2i3
G = 5*E(3)^2
= (-5-5*Sqrt(-3))/2 = -5-5b3
|