Group action invariants
| Degree $n$ : | $15$ | |
| Transitive number $t$ : | $13$ | |
| Group : | $(C_5^2 : C_3):C_2$ | |
| CHM label : | $[5^{2}]S(3)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,13,10,7,4)(2,5,8,11,14), (1,11)(2,7)(4,14)(5,10)(8,13), (1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10,15) | |
| $|\Aut(F/K)|$: | $5$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 6: $S_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $S_3$
Degree 5: None
Low degree siblings
15T14, 25T16, 30T37, 30T38Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 1, 1, 1, 1, 1 $ | $15$ | $2$ | $( 2, 3)( 5, 6)( 8, 9)(11,12)(14,15)$ |
| $ 5, 5, 1, 1, 1, 1, 1 $ | $6$ | $5$ | $( 2, 5, 8,11,14)( 3,15,12, 9, 6)$ |
| $ 5, 5, 1, 1, 1, 1, 1 $ | $6$ | $5$ | $( 2, 8,14, 5,11)( 3,12, 6,15, 9)$ |
| $ 3, 3, 3, 3, 3 $ | $50$ | $3$ | $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,11,12)(13,14,15)$ |
| $ 10, 5 $ | $15$ | $10$ | $( 1, 2, 4, 5, 7, 8,10,11,13,14)( 3,15,12, 9, 6)$ |
| $ 10, 5 $ | $15$ | $10$ | $( 1, 2, 7, 8,13,14, 4, 5,10,11)( 3,12, 6,15, 9)$ |
| $ 10, 5 $ | $15$ | $10$ | $( 1, 2,10,11, 4, 5,13,14, 7, 8)( 3, 9,15, 6,12)$ |
| $ 10, 5 $ | $15$ | $10$ | $( 1, 2,13,14,10,11, 7, 8, 4, 5)( 3, 6, 9,12,15)$ |
| $ 5, 5, 5 $ | $3$ | $5$ | $( 1, 4, 7,10,13)( 2, 5, 8,11,14)( 3,12, 6,15, 9)$ |
| $ 5, 5, 5 $ | $3$ | $5$ | $( 1, 4, 7,10,13)( 2, 8,14, 5,11)( 3, 9,15, 6,12)$ |
| $ 5, 5, 5 $ | $3$ | $5$ | $( 1, 7,13, 4,10)( 2,14,11, 8, 5)( 3,15,12, 9, 6)$ |
| $ 5, 5, 5 $ | $3$ | $5$ | $( 1,10, 4,13, 7)( 2,11, 5,14, 8)( 3,15,12, 9, 6)$ |
Group invariants
| Order: | $150=2 \cdot 3 \cdot 5^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [150, 5] |
| Character table: |
2 1 1 . . . 1 1 1 1 1 1 1 1
3 1 . . . 1 . . . . . . . .
5 2 1 2 2 . 1 1 1 1 2 2 2 2
1a 2a 5a 5b 3a 10a 10b 10c 10d 5c 5d 5e 5f
2P 1a 1a 5b 5a 3a 5c 5d 5f 5e 5d 5e 5f 5c
3P 1a 2a 5b 5a 1a 10c 10a 10d 10b 5f 5c 5d 5e
5P 1a 2a 1a 1a 3a 2a 2a 2a 2a 1a 1a 1a 1a
7P 1a 2a 5b 5a 3a 10b 10d 10a 10c 5d 5e 5f 5c
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 1 1 -1 -1 -1 -1 1 1 1 1
X.3 2 . 2 2 -1 . . . . 2 2 2 2
X.4 3 -1 A *A . C /D D /C E /F /E F
X.5 3 -1 A *A . /C D /D C /E F E /F
X.6 3 -1 *A A . D C /C /D F E /F /E
X.7 3 -1 *A A . /D /C C D /F /E F E
X.8 3 1 A *A . -/C -D -/D -C /E F E /F
X.9 3 1 A *A . -C -/D -D -/C E /F /E F
X.10 3 1 *A A . -/D -/C -C -D /F /E F E
X.11 3 1 *A A . -D -C -/C -/D F E /F /E
X.12 6 . B *B . . . . . G *G G *G
X.13 6 . *B B . . . . . *G G *G G
A = -E(5)-E(5)^4
= (1-Sqrt(5))/2 = -b5
B = 2*E(5)+E(5)^2+E(5)^3+2*E(5)^4
= (-3+Sqrt(5))/2 = -1+b5
C = -E(5)^2
D = -E(5)
E = 2*E(5)^3+E(5)^4
F = E(5)^2+2*E(5)^4
G = -2*E(5)-2*E(5)^4
= 1-Sqrt(5) = 1-r5
|