Properties

Label 15T101
Order \(5184000\)
n \(15\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $15$
Transitive number $t$ :  $101$
CHM label :  $[S(5)^{3}]3=S(5)wr3$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (6,9), (1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10,15), (3,6,9,12,15)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
3:  $C_3$
6:  $C_6$
12:  $A_4$
24:  $A_4\times C_2$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 3: $C_3$

Degree 5: None

Low degree siblings

18T953, 30T2611, 30T2615, 30T2621 x 2, 30T2630 x 2, 30T2632, 30T2634, 36T53410 x 2, 36T53411, 36T53412 x 2, 36T53413, 36T53414, 45T2365

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 133 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $5184000=2^{9} \cdot 3^{4} \cdot 5^{3}$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.