Properties

Label 15T100
Order \(5184000\)
n \(15\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $15$
Transitive number $t$ :  $100$
CHM label :  $[1/2.S(5)^{3}]S(3)$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,4)(11,14), (3,6)(9,12), (1,11)(2,7)(4,14)(5,10)(8,13), (1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10,15), (3,6,9,12,15)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
6:  $S_3$
24:  $S_4$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 3: $S_3$

Degree 5: None

Low degree siblings

18T955, 30T2610, 30T2612, 30T2614, 30T2619, 36T53418, 36T53419, 36T53420, 45T2364

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 79 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $5184000=2^{9} \cdot 3^{4} \cdot 5^{3}$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.