Group action invariants
| Degree $n$ : | $15$ | |
| Transitive number $t$ : | $10$ | |
| Group : | $S_5$ | |
| CHM label : | $S_{5}(15)$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,9,10,3,14)(2,15,7,12,6)(4,5,11,13,8), (1,4,10)(2,5,8)(3,7,11)(6,9,15)(12,14,13), (1,4)(2,6)(3,7)(5,15)(8,9)(12,13) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: None
Degree 5: $S_5$
Low degree siblings
5T5, 6T14, 10T12, 10T13, 12T74, 20T30, 20T32, 20T35, 24T202, 30T22, 30T25, 30T27, 40T62Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1 $ | $15$ | $2$ | $( 2, 5)( 3,13)( 4,10)( 7,14)( 9,15)(11,12)$ |
| $ 4, 4, 4, 2, 1 $ | $30$ | $4$ | $( 2, 7, 5,14)( 3,10,13, 4)( 6, 8)( 9,11,15,12)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1 $ | $10$ | $2$ | $( 2, 9)( 3,13)( 5,15)( 6, 8)( 7,12)(11,14)$ |
| $ 5, 5, 5 $ | $24$ | $5$ | $( 1, 2, 7,14, 5)( 3,13,15, 8, 9)( 4,11,12,10, 6)$ |
| $ 6, 6, 3 $ | $20$ | $6$ | $( 1, 2, 8, 4, 6, 9)( 3,13,15, 7,12, 5)(10,11,14)$ |
| $ 3, 3, 3, 3, 3 $ | $20$ | $3$ | $( 1, 2,12)( 3,11, 7)( 4,13, 6)( 5,10,15)( 8, 9,14)$ |
Group invariants
| Order: | $120=2^{3} \cdot 3 \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | [120, 34] |
| Character table: |
2 3 3 2 2 . 1 1
3 1 . . 1 . 1 1
5 1 . . . 1 . .
1a 2a 4a 2b 5a 6a 3a
2P 1a 1a 2a 1a 5a 3a 3a
3P 1a 2a 4a 2b 5a 2b 1a
5P 1a 2a 4a 2b 1a 6a 3a
X.1 1 1 1 1 1 1 1
X.2 1 1 -1 -1 1 -1 1
X.3 4 . . -2 -1 1 1
X.4 4 . . 2 -1 -1 1
X.5 5 1 -1 1 . 1 -1
X.6 5 1 1 -1 . -1 -1
X.7 6 -2 . . 1 . .
|