Properties

Label 14T61
Order \(50803200\)
n \(14\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $14$
Transitive number $t$ :  $61$
CHM label :  $[S(7)^{2}]2=S(7)wr2$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (2,4,6,8,10,12,14), (10,12), (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
8:  $D_{4}$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 7: None

Low degree siblings

28T1634, 28T1635, 28T1636, 42T3347

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 135 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $50803200=2^{9} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2}$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.