Properties

Label 14T56
Order \(322560\)
n \(14\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $14$
Transitive number $t$ :  $56$
CHM label :  $[2^{7}]A(7)=2wrA(7)$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (3,13,5)(6,12,10), (7,14), (1,3,5,7,9,11,13)(2,4,6,8,10,12,14)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
2520:  $A_7$
5040:  $A_7\times C_2$
161280:  14T53

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 7: $A_7$

Low degree siblings

28T946, 42T1587, 42T1588

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 64 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $322560=2^{10} \cdot 3^{2} \cdot 5 \cdot 7$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.