Properties

Label 14T55
Order \(322560\)
n \(14\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $14$
Transitive number $t$ :  $55$
CHM label :  $[2^{6}]S(7)$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (3,13,5)(6,12,10), (2,9)(7,14), (3,5)(10,12), (1,3,5,7,9,11,13)(2,4,6,8,10,12,14)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
5040:  $S_7$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 7: $S_7$

Low degree siblings

14T54, 28T945, 42T1589, 42T1590, 42T1591, 42T1592

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 55 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $322560=2^{10} \cdot 3^{2} \cdot 5 \cdot 7$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.