Group action invariants
| Degree $n$ : | $14$ | |
| Transitive number $t$ : | $53$ | |
| CHM label : | $[2^{6}]A(7)$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (3,13,5)(6,12,10), (2,9)(7,14), (1,3,5,7,9,11,13)(2,4,6,8,10,12,14) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2520: $A_7$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 7: $A_7$
Low degree siblings
42T1346, 42T1347Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $21$ | $2$ | $( 6,13)( 7,14)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $35$ | $2$ | $( 3,10)( 5,12)( 6,13)( 7,14)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1 $ | $7$ | $2$ | $( 2, 9)( 3,10)( 4,11)( 5,12)( 6,13)( 7,14)$ |
| $ 4, 4, 1, 1, 1, 1, 1, 1 $ | $420$ | $4$ | $( 1, 2, 8, 9)( 3,11,10, 4)$ |
| $ 4, 4, 2, 2, 1, 1 $ | $1260$ | $4$ | $( 1, 2, 8, 9)( 3,11,10, 4)( 6,13)( 7,14)$ |
| $ 4, 2, 2, 2, 1, 1, 1, 1 $ | $2520$ | $4$ | $( 1, 2, 8, 9)( 3,11)( 4,10)( 7,14)$ |
| $ 4, 2, 2, 2, 2, 2 $ | $840$ | $4$ | $( 1, 2, 8, 9)( 3,11)( 4,10)( 5,12)( 6,13)( 7,14)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $420$ | $2$ | $( 1, 9)( 2, 8)( 3,11)( 4,10)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1 $ | $1260$ | $2$ | $( 1, 9)( 2, 8)( 3,11)( 4,10)( 6,13)( 7,14)$ |
| $ 3, 3, 2, 2, 2, 2 $ | $280$ | $6$ | $( 1, 2, 3)( 4,11)( 5,12)( 6,13)( 7,14)( 8, 9,10)$ |
| $ 3, 3, 2, 2, 1, 1, 1, 1 $ | $1680$ | $6$ | $( 1, 2, 3)( 4,11)( 5,12)( 8, 9,10)$ |
| $ 6, 2, 2, 2, 1, 1 $ | $1120$ | $6$ | $( 1, 2,10, 8, 9, 3)( 4,11)( 5,12)( 6,13)$ |
| $ 6, 2, 1, 1, 1, 1, 1, 1 $ | $1120$ | $6$ | $( 1, 2,10, 8, 9, 3)( 4,11)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1, 1, 1 $ | $280$ | $3$ | $( 1, 2, 3)( 8, 9,10)$ |
| $ 4, 4, 3, 3 $ | $3360$ | $12$ | $( 1, 2, 3)( 4,12,11, 5)( 6,14,13, 7)( 8, 9,10)$ |
| $ 3, 3, 2, 2, 2, 2 $ | $3360$ | $6$ | $( 1, 2, 3)( 4, 5)( 6, 7)( 8, 9,10)(11,12)(13,14)$ |
| $ 6, 4, 2, 2 $ | $6720$ | $12$ | $( 1, 2,10, 8, 9, 3)( 4,12,11, 5)( 6, 7)(13,14)$ |
| $ 6, 3, 3, 2 $ | $4480$ | $6$ | $( 1, 2, 3)( 4,12,13,11, 5, 6)( 7,14)( 8, 9,10)$ |
| $ 3, 3, 3, 3, 1, 1 $ | $4480$ | $3$ | $( 1, 2, 3)( 4,12, 6)( 5,13,11)( 8, 9,10)$ |
| $ 6, 6, 1, 1 $ | $4480$ | $6$ | $( 1, 2,10, 8, 9, 3)( 4,12,13,11, 5, 6)$ |
| $ 6, 3, 3, 2 $ | $4480$ | $6$ | $( 1, 2,10, 8, 9, 3)( 4,12, 6)( 5,13,11)( 7,14)$ |
| $ 8, 2, 2, 2 $ | $10080$ | $8$ | $( 1, 2, 3, 4, 8, 9,10,11)( 5,13)( 6,12)( 7,14)$ |
| $ 8, 4, 1, 1 $ | $10080$ | $8$ | $( 1, 2, 3, 4, 8, 9,10,11)( 5, 6,12,13)$ |
| $ 4, 4, 2, 2, 1, 1 $ | $10080$ | $4$ | $( 1, 2,10,11)( 3, 4, 8, 9)( 5,13)( 6,12)$ |
| $ 4, 4, 4, 2 $ | $10080$ | $4$ | $( 1, 2,10,11)( 3, 4, 8, 9)( 5, 6,12,13)( 7,14)$ |
| $ 5, 5, 1, 1, 1, 1 $ | $8064$ | $5$ | $( 1, 2, 3, 4, 5)( 8, 9,10,11,12)$ |
| $ 5, 5, 2, 2 $ | $8064$ | $10$ | $( 1, 2, 3, 4, 5)( 6,13)( 7,14)( 8, 9,10,11,12)$ |
| $ 10, 2, 1, 1 $ | $8064$ | $10$ | $( 1, 2, 3, 4,12, 8, 9,10,11, 5)( 7,14)$ |
| $ 10, 2, 1, 1 $ | $8064$ | $10$ | $( 1, 2, 3, 4,12, 8, 9,10,11, 5)( 6,13)$ |
| $ 7, 7 $ | $23040$ | $7$ | $( 1, 2, 3, 4, 5, 6, 7)( 8, 9,10,11,12,13,14)$ |
| $ 7, 7 $ | $23040$ | $7$ | $( 1, 2, 3, 4, 5, 7, 6)( 8, 9,10,11,12,14,13)$ |
Group invariants
| Order: | $161280=2^{9} \cdot 3^{2} \cdot 5 \cdot 7$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | Data not available |
| Character table: Data not available. |