Properties

Label 14T52
Order \(56448\)
n \(14\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $14$
Transitive number $t$ :  $52$
CHM label :  $[L(7)^{2}]2=L(7)wr2$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (2,4,6,8,10,12,14), (2,4)(6,12), (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14), (2,4,8)(6,12,10)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 7: None

Low degree siblings

14T52, 16T1861, 28T546 x 2, 42T1003

Siblings are shown with degree $\leq 47$

A number field with this Galois group has exactly one arithmetically equivalent field.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ $441$ $2$ $( 2,12)( 4, 6)( 5, 9)(11,13)$
$ 4, 4, 2, 2, 1, 1 $ $1764$ $4$ $( 2, 4)( 3, 5, 7,13)( 6,10,12,14)( 9,11)$
$ 3, 3, 3, 3, 1, 1 $ $3136$ $3$ $( 2,10,12)( 3, 5, 9)( 4,14, 6)( 7,13,11)$
$ 7, 7 $ $576$ $7$ $( 1, 3, 5, 7, 9,11,13)( 2, 4, 6, 8,10,12,14)$
$ 7, 7 $ $576$ $7$ $( 1, 3, 5,13,11, 7, 9)( 2, 8,10,12, 6, 4,14)$
$ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $42$ $2$ $( 2,12)( 4, 6)$
$ 4, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ $84$ $4$ $( 2, 4)( 6,10,12,14)$
$ 3, 3, 1, 1, 1, 1, 1, 1, 1, 1 $ $112$ $3$ $( 2,10,12)( 4,14, 6)$
$ 7, 1, 1, 1, 1, 1, 1, 1 $ $48$ $7$ $( 2, 4, 6, 8,10,12,14)$
$ 7, 1, 1, 1, 1, 1, 1, 1 $ $48$ $7$ $( 2, 8,10,12, 6, 4,14)$
$ 4, 2, 2, 2, 1, 1, 1, 1 $ $1764$ $4$ $( 2, 4)( 5, 9)( 6,10,12,14)(11,13)$
$ 3, 3, 2, 2, 1, 1, 1, 1 $ $2352$ $6$ $( 2,10,12)( 4,14, 6)( 5, 9)(11,13)$
$ 7, 2, 2, 1, 1, 1 $ $1008$ $14$ $( 2, 4, 6, 8,10,12,14)( 5, 9)(11,13)$
$ 7, 2, 2, 1, 1, 1 $ $1008$ $14$ $( 2, 8,10,12, 6, 4,14)( 5, 9)(11,13)$
$ 4, 3, 3, 2, 1, 1 $ $4704$ $12$ $( 2,10,12)( 3, 5, 7,13)( 4,14, 6)( 9,11)$
$ 7, 4, 2, 1 $ $2016$ $28$ $( 2, 4, 6, 8,10,12,14)( 3, 5, 7,13)( 9,11)$
$ 7, 4, 2, 1 $ $2016$ $28$ $( 2, 8,10,12, 6, 4,14)( 3, 5, 7,13)( 9,11)$
$ 7, 3, 3, 1 $ $2688$ $21$ $( 2, 4, 6, 8,10,12,14)( 3, 5, 9)( 7,13,11)$
$ 7, 3, 3, 1 $ $2688$ $21$ $( 2, 8,10,12, 6, 4,14)( 3, 5, 9)( 7,13,11)$
$ 7, 7 $ $1152$ $7$ $( 1, 3, 5, 7, 9,11,13)( 2, 8,10,12, 6, 4,14)$
$ 2, 2, 2, 2, 2, 2, 2 $ $168$ $2$ $( 1, 8)( 2, 9)( 3,10)( 4,11)( 5,12)( 6,13)( 7,14)$
$ 4, 4, 2, 2, 2 $ $3528$ $4$ $( 1, 8)( 2, 9,12, 5)( 3,10)( 4,11, 6,13)( 7,14)$
$ 14 $ $4032$ $14$ $( 1,10, 3,12, 5,14, 7, 2, 9, 4,11, 6,13, 8)$
$ 14 $ $4032$ $14$ $( 1,10, 3,12, 5, 6,13, 4,11,14, 7, 2, 9, 8)$
$ 8, 4, 2 $ $7056$ $8$ $( 1, 8)( 2, 9, 4,11)( 3,12, 5,14, 7, 6,13,10)$
$ 6, 6, 2 $ $9408$ $6$ $( 1, 8)( 2, 9,10, 3,12, 5)( 4,11,14, 7, 6,13)$

Group invariants

Order:  $56448=2^{7} \cdot 3^{2} \cdot 7^{2}$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.