Group action invariants
| Degree $n$ : | $13$ | |
| Transitive number $t$ : | $6$ | |
| Group : | $F_{13}$ | |
| CHM label : | $F_{156}(13)=13:12$ | |
| Parity: | $-1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2,3,4,5,6,7,8,9,10,11,12,13), (1,2,4,8,3,6,12,11,9,5,10,7) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 4: $C_4$ 6: $C_6$ 12: $C_{12}$ Resolvents shown for degrees $\leq 47$
Subfields
Prime degree - none
Low degree siblings
26T8, 39T11Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 12, 1 $ | $13$ | $12$ | $( 2, 3, 5, 9, 4, 7,13,12,10, 6,11, 8)$ |
| $ 3, 3, 3, 3, 1 $ | $13$ | $3$ | $( 2, 4,10)( 3, 7, 6)( 5,13,11)( 8, 9,12)$ |
| $ 6, 6, 1 $ | $13$ | $6$ | $( 2, 5, 4,13,10,11)( 3, 9, 7,12, 6, 8)$ |
| $ 4, 4, 4, 1 $ | $13$ | $4$ | $( 2, 6,13, 9)( 3,11,12, 4)( 5, 8,10, 7)$ |
| $ 12, 1 $ | $13$ | $12$ | $( 2, 7,11, 9,10, 3,13, 8, 4, 6, 5,12)$ |
| $ 12, 1 $ | $13$ | $12$ | $( 2, 8,11, 6,10,12,13, 7, 4, 9, 5, 3)$ |
| $ 4, 4, 4, 1 $ | $13$ | $4$ | $( 2, 9,13, 6)( 3, 4,12,11)( 5, 7,10, 8)$ |
| $ 3, 3, 3, 3, 1 $ | $13$ | $3$ | $( 2,10, 4)( 3, 6, 7)( 5,11,13)( 8,12, 9)$ |
| $ 6, 6, 1 $ | $13$ | $6$ | $( 2,11,10,13, 4, 5)( 3, 8, 6,12, 7, 9)$ |
| $ 12, 1 $ | $13$ | $12$ | $( 2,12, 5, 6, 4, 8,13, 3,10, 9,11, 7)$ |
| $ 2, 2, 2, 2, 2, 2, 1 $ | $13$ | $2$ | $( 2,13)( 3,12)( 4,11)( 5,10)( 6, 9)( 7, 8)$ |
| $ 13 $ | $12$ | $13$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13)$ |
Group invariants
| Order: | $156=2^{2} \cdot 3 \cdot 13$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [156, 7] |
| Character table: |
2 2 2 2 2 2 2 2 2 2 2 2 2 .
3 1 1 1 1 1 1 1 1 1 1 1 1 .
13 1 . . . . . . . . . . . 1
1a 12a 3a 6a 4a 12b 12c 4b 3b 6b 12d 2a 13a
2P 1a 6a 3b 3a 2a 6b 6b 2a 3a 3b 6a 1a 13a
3P 1a 4b 1a 2a 4b 4b 4a 4a 1a 2a 4a 2a 13a
5P 1a 12b 3b 6b 4a 12a 12d 4b 3a 6a 12c 2a 13a
7P 1a 12d 3a 6a 4b 12c 12b 4a 3b 6b 12a 2a 13a
11P 1a 12c 3b 6b 4b 12d 12a 4a 3a 6a 12b 2a 13a
13P 1a 12a 3a 6a 4a 12b 12c 4b 3b 6b 12d 2a 1a
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 1 -1 -1 -1 -1 1 1 -1 1 1
X.3 1 A -A -/A -1 /A /A -1 -/A -A A 1 1
X.4 1 /A -/A -A -1 A A -1 -A -/A /A 1 1
X.5 1 -/A -/A -A 1 -A -A 1 -A -/A -/A 1 1
X.6 1 -A -A -/A 1 -/A -/A 1 -/A -A -A 1 1
X.7 1 B 1 -1 B B -B -B 1 -1 -B -1 1
X.8 1 -B 1 -1 -B -B B B 1 -1 B -1 1
X.9 1 C -A /A B -/C /C -B -/A A -C -1 1
X.10 1 -/C -/A A B C -C -B -A /A /C -1 1
X.11 1 /C -/A A -B -C C B -A /A -/C -1 1
X.12 1 -C -A /A -B /C -/C B -/A A C -1 1
X.13 12 . . . . . . . . . . . -1
A = -E(3)
= (1-Sqrt(-3))/2 = -b3
B = -E(4)
= -Sqrt(-1) = -i
C = -E(12)^7
|