Group action invariants
| Degree $n$ : | $13$ | |
| Transitive number $t$ : | $3$ | |
| Group : | $C_{13}:C_3$ | |
| CHM label : | $F_{39}(13)=13:3$ | |
| Parity: | $1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2,3,4,5,6,7,8,9,10,11,12,13), (1,3,9)(2,6,5)(4,12,10)(7,8,11) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 3: $C_3$ Resolvents shown for degrees $\leq 47$
Subfields
Prime degree - none
Low degree siblings
39T2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 3, 3, 1 $ | $13$ | $3$ | $( 2, 4,10)( 3, 7, 6)( 5,13,11)( 8, 9,12)$ |
| $ 3, 3, 3, 3, 1 $ | $13$ | $3$ | $( 2,10, 4)( 3, 6, 7)( 5,11,13)( 8,12, 9)$ |
| $ 13 $ | $3$ | $13$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13)$ |
| $ 13 $ | $3$ | $13$ | $( 1, 3, 5, 7, 9,11,13, 2, 4, 6, 8,10,12)$ |
| $ 13 $ | $3$ | $13$ | $( 1, 5, 9,13, 4, 8,12, 3, 7,11, 2, 6,10)$ |
| $ 13 $ | $3$ | $13$ | $( 1, 8, 2, 9, 3,10, 4,11, 5,12, 6,13, 7)$ |
Group invariants
| Order: | $39=3 \cdot 13$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [39, 1] |
| Character table: |
3 1 1 1 . . . .
13 1 . . 1 1 1 1
1a 3a 3b 13a 13b 13c 13d
2P 1a 3b 3a 13b 13c 13d 13a
3P 1a 1a 1a 13a 13b 13c 13d
5P 1a 3b 3a 13b 13c 13d 13a
7P 1a 3a 3b 13d 13a 13b 13c
11P 1a 3b 3a 13d 13a 13b 13c
13P 1a 3a 3b 1a 1a 1a 1a
X.1 1 1 1 1 1 1 1
X.2 1 A /A 1 1 1 1
X.3 1 /A A 1 1 1 1
X.4 3 . . B C /B /C
X.5 3 . . C /B /C B
X.6 3 . . /B /C B C
X.7 3 . . /C B C /B
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
B = E(13)+E(13)^3+E(13)^9
C = E(13)^2+E(13)^5+E(13)^6
|