Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $98$ | |
| Group : | $C_2^2.A_4:C_4$ | |
| CHM label : | $1/2[4^{3}]S(3)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (3,9)(6,12), (1,8,7,2)(3,6,9,12)(4,11,10,5), (1,10,7,4)(3,6,9,12), (1,5,9)(2,6,10)(3,7,11)(4,8,12) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 4: $C_4$ 6: $S_3$ 12: $C_3 : C_4$ 24: $S_4$ 48: 12T27 96: 12T62 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$
Degree 4: None
Degree 6: $S_4$
Low degree siblings
12T98, 24T317, 24T481, 24T482 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 3, 9)( 6,12)$ |
| $ 8, 1, 1, 1, 1 $ | $12$ | $8$ | $( 2, 3, 5, 6, 8, 9,11,12)$ |
| $ 8, 1, 1, 1, 1 $ | $12$ | $8$ | $( 2, 3,11,12, 8, 9, 5, 6)$ |
| $ 4, 4, 1, 1, 1, 1 $ | $3$ | $4$ | $( 2, 5, 8,11)( 3, 6, 9,12)$ |
| $ 4, 4, 1, 1, 1, 1 $ | $6$ | $4$ | $( 2, 5, 8,11)( 3,12, 9, 6)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $3$ | $2$ | $( 2, 8)( 3, 9)( 5,11)( 6,12)$ |
| $ 4, 4, 1, 1, 1, 1 $ | $3$ | $4$ | $( 2,11, 8, 5)( 3,12, 9, 6)$ |
| $ 4, 2, 2, 2, 2 $ | $12$ | $4$ | $( 1, 2)( 3, 6, 9,12)( 4, 5)( 7, 8)(10,11)$ |
| $ 4, 2, 2, 2, 2 $ | $12$ | $4$ | $( 1, 2)( 3,12, 9, 6)( 4, 5)( 7, 8)(10,11)$ |
| $ 3, 3, 3, 3 $ | $32$ | $3$ | $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,11,12)$ |
| $ 6, 6 $ | $32$ | $6$ | $( 1, 2, 3, 7, 8, 9)( 4, 5, 6,10,11,12)$ |
| $ 8, 2, 2 $ | $12$ | $8$ | $( 1, 2, 4, 5, 7, 8,10,11)( 3, 9)( 6,12)$ |
| $ 4, 4, 4 $ | $12$ | $4$ | $( 1, 2, 7, 8)( 3, 6, 9,12)( 4, 5,10,11)$ |
| $ 4, 4, 4 $ | $12$ | $4$ | $( 1, 2, 7, 8)( 3,12, 9, 6)( 4, 5,10,11)$ |
| $ 8, 2, 2 $ | $12$ | $8$ | $( 1, 2,10,11, 7, 8, 4, 5)( 3, 9)( 6,12)$ |
| $ 4, 4, 2, 2 $ | $3$ | $4$ | $( 1, 4, 7,10)( 2, 5, 8,11)( 3, 9)( 6,12)$ |
| $ 4, 4, 2, 2 $ | $6$ | $4$ | $( 1, 4, 7,10)( 2, 8)( 3,12, 9, 6)( 5,11)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 7)( 2, 8)( 3, 9)( 4,10)( 5,11)( 6,12)$ |
| $ 4, 4, 2, 2 $ | $3$ | $4$ | $( 1, 7)( 2,11, 8, 5)( 3,12, 9, 6)( 4,10)$ |
Group invariants
| Order: | $192=2^{6} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [192, 182] |
| Character table: |
2 6 6 4 4 6 5 6 6 4 4 1 1 4 4 4 4 6 5 6 6
3 1 . . . . . . . . . 1 1 . . . . . . 1 .
1a 2a 8a 8b 4a 4b 2b 4c 4d 4e 3a 6a 8c 4f 4g 8d 4h 4i 2c 4j
2P 1a 1a 4a 4c 2b 2b 1a 2b 2a 2a 3a 3a 4a 2c 2c 4c 2b 2b 1a 2b
3P 1a 2a 8b 8a 4c 4b 2b 4a 4e 4d 1a 2c 8d 4g 4f 8c 4j 4i 2c 4h
5P 1a 2a 8a 8b 4a 4b 2b 4c 4d 4e 3a 6a 8c 4f 4g 8d 4h 4i 2c 4j
7P 1a 2a 8b 8a 4c 4b 2b 4a 4e 4d 3a 6a 8d 4g 4f 8c 4j 4i 2c 4h
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 -1 -1 1 1 1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 1 1
X.3 1 -1 A -A -1 1 1 -1 A -A 1 -1 -A -A A A 1 -1 -1 1
X.4 1 -1 -A A -1 1 1 -1 -A A 1 -1 A A -A -A 1 -1 -1 1
X.5 2 2 . . 2 2 2 2 . . -1 -1 . . . . 2 2 2 2
X.6 2 -2 . . -2 2 2 -2 . . -1 1 . . . . 2 -2 -2 2
X.7 3 3 -1 -1 -1 -1 3 -1 1 1 . . -1 1 1 -1 -1 -1 3 -1
X.8 3 3 1 1 -1 -1 3 -1 -1 -1 . . 1 -1 -1 1 -1 -1 3 -1
X.9 3 -3 A -A 1 -1 3 1 -A A . . -A A -A A -1 1 -3 -1
X.10 3 -3 -A A 1 -1 3 1 A -A . . A -A A -A -1 1 -3 -1
X.11 3 -1 A -A B 1 -1 /B 1 1 . . A -1 -1 -A /B 1 3 B
X.12 3 -1 -A A /B 1 -1 B 1 1 . . -A -1 -1 A B 1 3 /B
X.13 3 -1 A -A /B 1 -1 B -1 -1 . . A 1 1 -A B 1 3 /B
X.14 3 -1 -A A B 1 -1 /B -1 -1 . . -A 1 1 A /B 1 3 B
X.15 3 1 -1 -1 -/B 1 -1 -B -A A . . 1 -A A 1 B -1 -3 /B
X.16 3 1 -1 -1 -B 1 -1 -/B A -A . . 1 A -A 1 /B -1 -3 B
X.17 3 1 1 1 -/B 1 -1 -B A -A . . -1 A -A -1 B -1 -3 /B
X.18 3 1 1 1 -B 1 -1 -/B -A A . . -1 -A A -1 /B -1 -3 B
X.19 6 2 . . -2 -2 -2 -2 . . . . . . . . 2 2 -6 2
X.20 6 -2 . . 2 -2 -2 2 . . . . . . . . 2 -2 6 2
A = -E(4)
= -Sqrt(-1) = -i
B = -1-2*E(4)
= -1-2*Sqrt(-1) = -1-2i
|