Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $97$ | |
| Group : | $C_2\times C_4^2:C_3:C_2$ | |
| CHM label : | $[(1/2.2^{2})^{3}]S_{4}(6c)_{4}$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,12)(2,3), (1,3)(2,12)(4,8)(5,9)(6,11)(7,10), (1,5,9)(2,6,10)(3,7,11)(4,8,12) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 6: $S_3$ 12: $D_{6}$ 24: $S_4$ 48: $S_4\times C_2$ 96: 12T62 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$
Degree 4: None
Degree 6: $S_4$
Low degree siblings
12T95 x 2, 12T96, 24T471, 24T472 x 2, 24T473 x 2, 24T474 x 2, 24T475 x 2, 24T476, 24T477, 24T478, 24T479 x 2, 24T480 x 2, 32T2216 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 8, 9)(10,11)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $3$ | $2$ | $( 4, 5)( 6, 7)( 8, 9)(10,11)$ |
| $ 4, 4, 1, 1, 1, 1 $ | $6$ | $4$ | $( 4, 6, 5, 7)( 8,10, 9,11)$ |
| $ 4, 4, 1, 1, 1, 1 $ | $3$ | $4$ | $( 4, 6, 5, 7)( 8,11, 9,10)$ |
| $ 4, 4, 1, 1, 1, 1 $ | $3$ | $4$ | $( 4, 7, 5, 6)( 8,10, 9,11)$ |
| $ 8, 2, 1, 1 $ | $12$ | $8$ | $( 2, 3)( 4, 8, 6,11, 5, 9, 7,10)$ |
| $ 8, 2, 1, 1 $ | $12$ | $8$ | $( 2, 3)( 4, 8, 7,10, 5, 9, 6,11)$ |
| $ 8, 2, 1, 1 $ | $12$ | $8$ | $( 2, 3)( 4,10, 7, 9, 5,11, 6, 8)$ |
| $ 8, 2, 1, 1 $ | $12$ | $8$ | $( 2, 3)( 4,10, 6, 8, 5,11, 7, 9)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $12$ | $2$ | $( 1, 2)( 3,12)( 4, 8)( 5, 9)( 6,11)( 7,10)$ |
| $ 4, 4, 2, 2 $ | $12$ | $4$ | $( 1, 2)( 3,12)( 4, 8, 5, 9)( 6,11, 7,10)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $12$ | $2$ | $( 1, 2)( 3,12)( 4,10)( 5,11)( 6, 8)( 7, 9)$ |
| $ 4, 4, 2, 2 $ | $12$ | $4$ | $( 1, 2)( 3,12)( 4,10, 5,11)( 6, 8, 7, 9)$ |
| $ 4, 4, 2, 2 $ | $3$ | $4$ | $( 1, 2,12, 3)( 4, 5)( 6, 7)( 8,10, 9,11)$ |
| $ 4, 4, 2, 2 $ | $6$ | $4$ | $( 1, 2,12, 3)( 4, 5)( 6, 7)( 8,11, 9,10)$ |
| $ 4, 4, 2, 2 $ | $3$ | $4$ | $( 1, 2,12, 3)( 4, 6, 5, 7)( 8, 9)(10,11)$ |
| $ 3, 3, 3, 3 $ | $32$ | $3$ | $( 1, 4, 8)( 2, 7,11)( 3, 6,10)( 5, 9,12)$ |
| $ 6, 6 $ | $32$ | $6$ | $( 1, 4, 8,12, 5, 9)( 2, 7,11, 3, 6,10)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,12)( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)$ |
Group invariants
| Order: | $192=2^{6} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [192, 944] |
| Character table: |
2 6 6 6 5 6 6 4 4 4 4 4 4 4 4 6 5 6 1 1 6
3 1 . . . . . . . . . . . . . . . . 1 1 1
1a 2a 2b 4a 4b 4c 8a 8b 8c 8d 2c 4d 2d 4e 4f 4g 4h 3a 6a 2e
2P 1a 1a 1a 2b 2b 2b 4b 4c 4c 4b 1a 2b 1a 2b 2b 2b 2b 3a 3a 1a
3P 1a 2a 2b 4a 4c 4b 8c 8d 8a 8b 2c 4d 2d 4e 4h 4g 4f 1a 2e 2e
5P 1a 2a 2b 4a 4b 4c 8a 8b 8c 8d 2c 4d 2d 4e 4f 4g 4h 3a 6a 2e
7P 1a 2a 2b 4a 4c 4b 8c 8d 8a 8b 2c 4d 2d 4e 4h 4g 4f 3a 6a 2e
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 -1 1 1 -1 1 -1 1 1 -1 -1 1 -1 1 -1 1 -1 -1
X.3 1 -1 1 -1 1 1 1 -1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 -1
X.4 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1
X.5 2 2 2 2 2 2 . . . . . . . . 2 2 2 -1 -1 2
X.6 2 -2 2 -2 2 2 . . . . . . . . -2 2 -2 -1 1 -2
X.7 3 -3 3 1 -1 -1 -1 1 -1 1 -1 1 1 -1 1 -1 1 . . -3
X.8 3 -3 3 1 -1 -1 1 -1 1 -1 1 -1 -1 1 1 -1 1 . . -3
X.9 3 3 3 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 . . 3
X.10 3 3 3 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 . . 3
X.11 3 -1 -1 1 A /A B -B -B B -1 1 -1 1 /A 1 A . . 3
X.12 3 -1 -1 1 /A A -B B B -B -1 1 -1 1 A 1 /A . . 3
X.13 3 -1 -1 1 A /A -B B B -B 1 -1 1 -1 /A 1 A . . 3
X.14 3 -1 -1 1 /A A B -B -B B 1 -1 1 -1 A 1 /A . . 3
X.15 3 1 -1 -1 A /A B B -B -B 1 1 -1 -1 -/A 1 -A . . -3
X.16 3 1 -1 -1 /A A -B -B B B 1 1 -1 -1 -A 1 -/A . . -3
X.17 3 1 -1 -1 A /A -B -B B B -1 -1 1 1 -/A 1 -A . . -3
X.18 3 1 -1 -1 /A A B B -B -B -1 -1 1 1 -A 1 -/A . . -3
X.19 6 2 -2 2 2 2 . . . . . . . . -2 -2 -2 . . -6
X.20 6 -2 -2 -2 2 2 . . . . . . . . 2 -2 2 . . 6
A = -1-2*E(4)
= -1-2*Sqrt(-1) = -1-2i
B = -E(4)
= -Sqrt(-1) = -i
|