Properties

Label 12T97
Order \(192\)
n \(12\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No
Group: $C_2\times C_4^2:C_3:C_2$

Related objects

Learn more about

Group action invariants

Degree $n$ :  $12$
Transitive number $t$ :  $97$
Group :  $C_2\times C_4^2:C_3:C_2$
CHM label :  $[(1/2.2^{2})^{3}]S_{4}(6c)_{4}$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,12)(2,3), (1,3)(2,12)(4,8)(5,9)(6,11)(7,10), (1,5,9)(2,6,10)(3,7,11)(4,8,12)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
6:  $S_3$
12:  $D_{6}$
24:  $S_4$
48:  $S_4\times C_2$
96:  12T62

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: $S_3$

Degree 4: None

Degree 6: $S_4$

Low degree siblings

12T95 x 2, 12T96, 24T471, 24T472 x 2, 24T473 x 2, 24T474 x 2, 24T475 x 2, 24T476, 24T477, 24T478, 24T479 x 2, 24T480 x 2, 32T2216 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ $3$ $2$ $( 8, 9)(10,11)$
$ 2, 2, 2, 2, 1, 1, 1, 1 $ $3$ $2$ $( 4, 5)( 6, 7)( 8, 9)(10,11)$
$ 4, 4, 1, 1, 1, 1 $ $6$ $4$ $( 4, 6, 5, 7)( 8,10, 9,11)$
$ 4, 4, 1, 1, 1, 1 $ $3$ $4$ $( 4, 6, 5, 7)( 8,11, 9,10)$
$ 4, 4, 1, 1, 1, 1 $ $3$ $4$ $( 4, 7, 5, 6)( 8,10, 9,11)$
$ 8, 2, 1, 1 $ $12$ $8$ $( 2, 3)( 4, 8, 6,11, 5, 9, 7,10)$
$ 8, 2, 1, 1 $ $12$ $8$ $( 2, 3)( 4, 8, 7,10, 5, 9, 6,11)$
$ 8, 2, 1, 1 $ $12$ $8$ $( 2, 3)( 4,10, 7, 9, 5,11, 6, 8)$
$ 8, 2, 1, 1 $ $12$ $8$ $( 2, 3)( 4,10, 6, 8, 5,11, 7, 9)$
$ 2, 2, 2, 2, 2, 2 $ $12$ $2$ $( 1, 2)( 3,12)( 4, 8)( 5, 9)( 6,11)( 7,10)$
$ 4, 4, 2, 2 $ $12$ $4$ $( 1, 2)( 3,12)( 4, 8, 5, 9)( 6,11, 7,10)$
$ 2, 2, 2, 2, 2, 2 $ $12$ $2$ $( 1, 2)( 3,12)( 4,10)( 5,11)( 6, 8)( 7, 9)$
$ 4, 4, 2, 2 $ $12$ $4$ $( 1, 2)( 3,12)( 4,10, 5,11)( 6, 8, 7, 9)$
$ 4, 4, 2, 2 $ $3$ $4$ $( 1, 2,12, 3)( 4, 5)( 6, 7)( 8,10, 9,11)$
$ 4, 4, 2, 2 $ $6$ $4$ $( 1, 2,12, 3)( 4, 5)( 6, 7)( 8,11, 9,10)$
$ 4, 4, 2, 2 $ $3$ $4$ $( 1, 2,12, 3)( 4, 6, 5, 7)( 8, 9)(10,11)$
$ 3, 3, 3, 3 $ $32$ $3$ $( 1, 4, 8)( 2, 7,11)( 3, 6,10)( 5, 9,12)$
$ 6, 6 $ $32$ $6$ $( 1, 4, 8,12, 5, 9)( 2, 7,11, 3, 6,10)$
$ 2, 2, 2, 2, 2, 2 $ $1$ $2$ $( 1,12)( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)$

Group invariants

Order:  $192=2^{6} \cdot 3$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  [192, 944]
Character table:   
      2  6  6  6  5  6  6  4  4  4  4  4  4  4  4   6  5   6  1  1  6
      3  1  .  .  .  .  .  .  .  .  .  .  .  .  .   .  .   .  1  1  1

        1a 2a 2b 4a 4b 4c 8a 8b 8c 8d 2c 4d 2d 4e  4f 4g  4h 3a 6a 2e
     2P 1a 1a 1a 2b 2b 2b 4b 4c 4c 4b 1a 2b 1a 2b  2b 2b  2b 3a 3a 1a
     3P 1a 2a 2b 4a 4c 4b 8c 8d 8a 8b 2c 4d 2d 4e  4h 4g  4f 1a 2e 2e
     5P 1a 2a 2b 4a 4b 4c 8a 8b 8c 8d 2c 4d 2d 4e  4f 4g  4h 3a 6a 2e
     7P 1a 2a 2b 4a 4c 4b 8c 8d 8a 8b 2c 4d 2d 4e  4h 4g  4f 3a 6a 2e

X.1      1  1  1  1  1  1  1  1  1  1  1  1  1  1   1  1   1  1  1  1
X.2      1 -1  1 -1  1  1 -1  1 -1  1  1 -1 -1  1  -1  1  -1  1 -1 -1
X.3      1 -1  1 -1  1  1  1 -1  1 -1 -1  1  1 -1  -1  1  -1  1 -1 -1
X.4      1  1  1  1  1  1 -1 -1 -1 -1 -1 -1 -1 -1   1  1   1  1  1  1
X.5      2  2  2  2  2  2  .  .  .  .  .  .  .  .   2  2   2 -1 -1  2
X.6      2 -2  2 -2  2  2  .  .  .  .  .  .  .  .  -2  2  -2 -1  1 -2
X.7      3 -3  3  1 -1 -1 -1  1 -1  1 -1  1  1 -1   1 -1   1  .  . -3
X.8      3 -3  3  1 -1 -1  1 -1  1 -1  1 -1 -1  1   1 -1   1  .  . -3
X.9      3  3  3 -1 -1 -1 -1 -1 -1 -1  1  1  1  1  -1 -1  -1  .  .  3
X.10     3  3  3 -1 -1 -1  1  1  1  1 -1 -1 -1 -1  -1 -1  -1  .  .  3
X.11     3 -1 -1  1  A /A  B -B -B  B -1  1 -1  1  /A  1   A  .  .  3
X.12     3 -1 -1  1 /A  A -B  B  B -B -1  1 -1  1   A  1  /A  .  .  3
X.13     3 -1 -1  1  A /A -B  B  B -B  1 -1  1 -1  /A  1   A  .  .  3
X.14     3 -1 -1  1 /A  A  B -B -B  B  1 -1  1 -1   A  1  /A  .  .  3
X.15     3  1 -1 -1  A /A  B  B -B -B  1  1 -1 -1 -/A  1  -A  .  . -3
X.16     3  1 -1 -1 /A  A -B -B  B  B  1  1 -1 -1  -A  1 -/A  .  . -3
X.17     3  1 -1 -1  A /A -B -B  B  B -1 -1  1  1 -/A  1  -A  .  . -3
X.18     3  1 -1 -1 /A  A  B  B -B -B -1 -1  1  1  -A  1 -/A  .  . -3
X.19     6  2 -2  2  2  2  .  .  .  .  .  .  .  .  -2 -2  -2  .  . -6
X.20     6 -2 -2 -2  2  2  .  .  .  .  .  .  .  .   2 -2   2  .  .  6

A = -1-2*E(4)
  = -1-2*Sqrt(-1) = -1-2i
B = -E(4)
  = -Sqrt(-1) = -i