Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $90$ | |
| Group : | $C_2^2\times C_2^4:C_3$ | |
| CHM label : | $[E(4)^{3}]3=E(4)wr3$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (3,12)(6,9), (3,9)(6,12), (1,5,9)(2,6,10)(3,7,11)(4,8,12) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 3: $C_3$ 4: $C_2^2$ 6: $C_6$ x 3 12: $A_4$ x 5, $C_6\times C_2$ 24: $A_4\times C_2$ x 15 48: $C_2^2 \times A_4$ x 5, $C_2^4:C_3$ 96: 12T56 x 3 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $C_3$
Degree 4: None
Degree 6: $A_4\times C_2$ x 3
Low degree siblings
12T90 x 59, 24T457 x 90, 24T458 x 90, 24T459 x 120Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 3, 6)( 9,12)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 3, 9)( 6,12)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 3,12)( 6, 9)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $3$ | $2$ | $( 2, 5)( 3, 6)( 8,11)( 9,12)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $3$ | $2$ | $( 2, 5)( 3, 9)( 6,12)( 8,11)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $3$ | $2$ | $( 2, 5)( 3,12)( 6, 9)( 8,11)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $3$ | $2$ | $( 2, 8)( 3, 6)( 5,11)( 9,12)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $3$ | $2$ | $( 2, 8)( 3, 9)( 5,11)( 6,12)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $3$ | $2$ | $( 2, 8)( 3,12)( 5,11)( 6, 9)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $3$ | $2$ | $( 2,11)( 3, 6)( 5, 8)( 9,12)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $3$ | $2$ | $( 2,11)( 3, 9)( 5, 8)( 6,12)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $3$ | $2$ | $( 2,11)( 3,12)( 5, 8)( 6, 9)$ |
| $ 3, 3, 3, 3 $ | $16$ | $3$ | $( 1, 2, 3)( 4,11, 6)( 5,12,10)( 7, 8, 9)$ |
| $ 6, 6 $ | $16$ | $6$ | $( 1, 2, 3, 4,11, 6)( 5,12, 7, 8, 9,10)$ |
| $ 6, 6 $ | $16$ | $6$ | $( 1, 2, 3, 7, 8, 9)( 4,11, 6,10, 5,12)$ |
| $ 6, 6 $ | $16$ | $6$ | $( 1, 2, 3,10, 5,12)( 4,11, 6, 7, 8, 9)$ |
| $ 3, 3, 3, 3 $ | $16$ | $3$ | $( 1, 3, 2)( 4, 6,11)( 5,10,12)( 7, 9, 8)$ |
| $ 6, 6 $ | $16$ | $6$ | $( 1, 3, 5,10,12, 2)( 4, 6, 8, 7, 9,11)$ |
| $ 6, 6 $ | $16$ | $6$ | $( 1, 3, 8, 7, 9, 2)( 4, 6, 5,10,12,11)$ |
| $ 6, 6 $ | $16$ | $6$ | $( 1, 3,11, 4, 6, 2)( 5,10,12, 8, 7, 9)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $3$ | $2$ | $( 1, 4)( 2, 5)( 3, 6)( 7,10)( 8,11)( 9,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $3$ | $2$ | $( 1, 4)( 2, 5)( 3, 9)( 6,12)( 7,10)( 8,11)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $3$ | $2$ | $( 1, 4)( 2, 5)( 3,12)( 6, 9)( 7,10)( 8,11)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $3$ | $2$ | $( 1, 4)( 2, 8)( 3, 6)( 5,11)( 7,10)( 9,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $3$ | $2$ | $( 1, 4)( 2, 8)( 3, 9)( 5,11)( 6,12)( 7,10)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $3$ | $2$ | $( 1, 4)( 2, 8)( 3,12)( 5,11)( 6, 9)( 7,10)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 4)( 2,11)( 3, 6)( 5, 8)( 7,10)( 9,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $3$ | $2$ | $( 1, 7)( 2, 5)( 3, 9)( 4,10)( 6,12)( 8,11)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $3$ | $2$ | $( 1, 7)( 2, 5)( 3,12)( 4,10)( 6, 9)( 8,11)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 7)( 2, 8)( 3, 9)( 4,10)( 5,11)( 6,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,10)( 2, 5)( 3,12)( 4, 7)( 6, 9)( 8,11)$ |
Group invariants
| Order: | $192=2^{6} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [192, 1540] |
| Character table: Data not available. |