Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $9$ | |
| Group : | $S_4$ | |
| CHM label : | $1/2[1/8.2^{6}]S(3)=S_{4}(12e)$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2)(3,12)(4,11)(5,10)(6,9)(7,8), (1,7)(3,9)(4,10)(6,12), (1,5,9)(2,6,10)(3,7,11)(4,8,12) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 6: $S_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 4: None
Low degree siblings
4T5, 6T7, 6T8, 8T14, 12T8, 24T10Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $3$ | $2$ | $( 2, 8)( 3, 9)( 5,11)( 6,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 2)( 3,12)( 4,11)( 5,10)( 6, 9)( 7, 8)$ |
| $ 4, 4, 2, 2 $ | $6$ | $4$ | $( 1, 2, 7, 8)( 3, 6)( 4,11,10, 5)( 9,12)$ |
| $ 3, 3, 3, 3 $ | $8$ | $3$ | $( 1, 3,11)( 2, 4, 6)( 5, 7, 9)( 8,10,12)$ |
Group invariants
| Order: | $24=2^{3} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [24, 12] |
| Character table: |
2 3 3 2 2 .
3 1 . . . 1
1a 2a 2b 4a 3a
2P 1a 1a 1a 2a 3a
3P 1a 2a 2b 4a 1a
X.1 1 1 1 1 1
X.2 1 1 -1 -1 1
X.3 2 2 . . -1
X.4 3 -1 -1 1 .
X.5 3 -1 1 -1 .
|