Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $89$ | |
| Group : | $C_2\times C_4:D_4:C_3$ | |
| CHM label : | $[(1/2.2^{2})^{3}]2A_{4}(6)_{4}{n4}$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,12)(2,3), (1,12)(4,6)(5,7)(10,11), (1,7,9,3,5,11)(2,4,10,12,6,8) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 3: $C_3$ 4: $C_2^2$ 6: $C_6$ x 3 12: $A_4$, $C_6\times C_2$ 24: $A_4\times C_2$ x 3 48: $C_2^2 \times A_4$ 96: 12T60 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $C_3$
Degree 4: None
Degree 6: $A_4\times C_2$
Low degree siblings
12T89, 12T92 x 2, 24T453 x 2, 24T454 x 2, 24T455 x 4, 24T456 x 4, 24T463, 24T464, 24T465 x 4, 24T466 x 4, 32T2188 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 8, 9)(10,11)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $3$ | $2$ | $( 4, 5)( 6, 7)( 8, 9)(10,11)$ |
| $ 4, 4, 1, 1, 1, 1 $ | $6$ | $4$ | $( 4, 6, 5, 7)( 8,10, 9,11)$ |
| $ 4, 4, 1, 1, 1, 1 $ | $6$ | $4$ | $( 4, 6, 5, 7)( 8,11, 9,10)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $12$ | $2$ | $( 2, 3)( 6, 7)( 8,10)( 9,11)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $12$ | $2$ | $( 2, 3)( 6, 7)( 8,11)( 9,10)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 2)( 3,12)( 4, 6)( 5, 7)( 8,10)( 9,11)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 2)( 3,12)( 4, 6)( 5, 7)( 8,11)( 9,10)$ |
| $ 4, 4, 2, 2 $ | $6$ | $4$ | $( 1, 2,12, 3)( 4, 5)( 6, 7)( 8,10, 9,11)$ |
| $ 4, 4, 2, 2 $ | $6$ | $4$ | $( 1, 2,12, 3)( 4, 5)( 6, 7)( 8,11, 9,10)$ |
| $ 6, 6 $ | $16$ | $6$ | $( 1, 4, 8, 2, 6,11)( 3, 7,10,12, 5, 9)$ |
| $ 6, 6 $ | $16$ | $6$ | $( 1, 4, 8, 3, 7,10)( 2, 6,11,12, 5, 9)$ |
| $ 3, 3, 3, 3 $ | $16$ | $3$ | $( 1, 4, 8)( 2, 7,11)( 3, 6,10)( 5, 9,12)$ |
| $ 6, 6 $ | $16$ | $6$ | $( 1, 4, 8,12, 5, 9)( 2, 7,11, 3, 6,10)$ |
| $ 6, 6 $ | $16$ | $6$ | $( 1, 8, 6, 2,10, 4)( 3,11, 5,12, 9, 7)$ |
| $ 6, 6 $ | $16$ | $6$ | $( 1, 8, 7, 3,11, 4)( 2,10, 5,12, 9, 6)$ |
| $ 3, 3, 3, 3 $ | $16$ | $3$ | $( 1, 8, 4)( 2,11, 7)( 3,10, 6)( 5,12, 9)$ |
| $ 6, 6 $ | $16$ | $6$ | $( 1, 8, 5,12, 9, 4)( 2,11, 6, 3,10, 7)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,12)( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)$ |
Group invariants
| Order: | $192=2^{6} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [192, 1002] |
| Character table: |
2 6 6 6 5 5 4 4 4 4 5 5 2 2 2 2 2 2 2 2 6
3 1 . . . . . . 1 1 . . 1 1 1 1 1 1 1 1 1
1a 2a 2b 4a 4b 2c 2d 2e 2f 4c 4d 6a 6b 3a 6c 6d 6e 3b 6f 2g
2P 1a 1a 1a 2b 2b 1a 1a 1a 1a 2b 2b 3b 3b 3b 3b 3a 3a 3a 3a 1a
3P 1a 2a 2b 4a 4b 2c 2d 2e 2f 4c 4d 2f 2e 1a 2g 2e 2f 1a 2g 2g
5P 1a 2a 2b 4a 4b 2c 2d 2e 2f 4c 4d 6e 6d 3b 6f 6b 6a 3a 6c 2g
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1 -1 1 1 -1 -1
X.3 1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 1 -1 -1
X.4 1 1 1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 1
X.5 1 -1 1 -1 1 -1 1 -1 1 -1 1 A -A A -A -/A /A /A -/A -1
X.6 1 -1 1 -1 1 -1 1 -1 1 -1 1 /A -/A /A -/A -A A A -A -1
X.7 1 -1 1 -1 1 1 -1 1 -1 -1 1 -/A /A /A -/A A -A A -A -1
X.8 1 -1 1 -1 1 1 -1 1 -1 -1 1 -A A A -A /A -/A /A -/A -1
X.9 1 1 1 1 1 -1 -1 -1 -1 1 1 -/A -/A /A /A -A -A A A 1
X.10 1 1 1 1 1 -1 -1 -1 -1 1 1 -A -A A A -/A -/A /A /A 1
X.11 1 1 1 1 1 1 1 1 1 1 1 A A A A /A /A /A /A 1
X.12 1 1 1 1 1 1 1 1 1 1 1 /A /A /A /A A A A A 1
X.13 3 -3 3 1 -1 -1 1 3 -3 1 -1 . . . . . . . . -3
X.14 3 -3 3 1 -1 1 -1 -3 3 1 -1 . . . . . . . . -3
X.15 3 3 3 -1 -1 -1 -1 3 3 -1 -1 . . . . . . . . 3
X.16 3 3 3 -1 -1 1 1 -3 -3 -1 -1 . . . . . . . . 3
X.17 6 -2 -2 -2 2 . . . . 2 -2 . . . . . . . . 6
X.18 6 -2 -2 2 -2 . . . . -2 2 . . . . . . . . 6
X.19 6 2 -2 -2 -2 . . . . 2 2 . . . . . . . . -6
X.20 6 2 -2 2 2 . . . . -2 -2 . . . . . . . . -6
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
|