Properties

Label 12T86
Order \(192\)
n \(12\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No
Group: $D_4\times S_4$

Related objects

Learn more about

Group action invariants

Degree $n$ :  $12$
Transitive number $t$ :  $86$
Group :  $D_4\times S_4$
CHM label :  $[1/16.D(4)^{3}]S(3)$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (3,9)(6,12), (1,10)(2,5)(3,12)(4,7)(6,9)(8,11), (1,7)(3,9)(5,11), (1,5)(2,10)(4,8)(7,11), (1,5,9)(2,6,10)(3,7,11)(4,8,12)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_2^2$ x 7
6:  $S_3$
8:  $D_{4}$ x 2, $C_2^3$
12:  $D_{6}$ x 3
16:  $D_4\times C_2$
24:  $S_4$, $S_3 \times C_2^2$
48:  $S_4\times C_2$ x 3, 12T28
96:  12T48

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 3: $S_3$

Degree 4: None

Degree 6: $D_{6}$

Low degree siblings

12T86 x 3, 16T421 x 4, 24T358 x 2, 24T393 x 2, 24T434 x 2, 24T435 x 2, 24T436 x 2, 24T437 x 4, 24T438 x 4, 24T439 x 4, 24T440 x 4, 32T2138 x 2, 32T2139 x 2, 32T2140 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 2, 2, 2, 1, 1, 1, 1, 1, 1 $ $6$ $2$ $( 4,10)( 5,11)( 6,12)$
$ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ $3$ $2$ $( 3, 9)( 6,12)$
$ 4, 4, 1, 1, 1, 1 $ $6$ $4$ $( 2, 6, 8,12)( 3, 5, 9,11)$
$ 2, 2, 2, 2, 2, 1, 1 $ $12$ $2$ $( 2, 6)( 3, 5)( 4,10)( 8,12)( 9,11)$
$ 2, 2, 2, 2, 1, 1, 1, 1 $ $6$ $2$ $( 2, 6)( 3,11)( 5, 9)( 8,12)$
$ 4, 4, 2, 1, 1 $ $12$ $4$ $( 2, 6, 8,12)( 3,11, 9, 5)( 4,10)$
$ 2, 2, 2, 1, 1, 1, 1, 1, 1 $ $2$ $2$ $( 2, 8)( 4,10)( 6,12)$
$ 2, 2, 2, 2, 1, 1, 1, 1 $ $3$ $2$ $( 2, 8)( 3, 9)( 5,11)( 6,12)$
$ 4, 2, 2, 2, 2 $ $12$ $4$ $( 1, 2)( 3, 6, 9,12)( 4, 5)( 7, 8)(10,11)$
$ 2, 2, 2, 2, 2, 2 $ $12$ $2$ $( 1, 2)( 3, 6)( 4,11)( 5,10)( 7, 8)( 9,12)$
$ 12 $ $16$ $12$ $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12)$
$ 6, 6 $ $16$ $6$ $( 1, 2, 3, 4,11, 6)( 5,12, 7, 8, 9,10)$
$ 4, 4, 4 $ $12$ $4$ $( 1, 2, 7, 8)( 3, 6, 9,12)( 4, 5,10,11)$
$ 4, 4, 2, 2 $ $12$ $4$ $( 1, 2, 7, 8)( 3, 6)( 4,11,10, 5)( 9,12)$
$ 6, 6 $ $8$ $6$ $( 1, 3, 5, 7, 9,11)( 2, 4, 6, 8,10,12)$
$ 6, 3, 3 $ $16$ $6$ $( 1, 3, 5)( 2, 4,12, 8,10, 6)( 7, 9,11)$
$ 3, 3, 3, 3 $ $8$ $3$ $( 1, 3,11)( 2, 4, 6)( 5, 7, 9)( 8,10,12)$
$ 2, 2, 2, 2, 2, 2 $ $6$ $2$ $( 1, 3)( 2, 8)( 4, 6)( 5,11)( 7, 9)(10,12)$
$ 4, 4, 2, 2 $ $6$ $4$ $( 1, 3, 7, 9)( 2, 8)( 4, 6,10,12)( 5,11)$
$ 2, 2, 2, 2, 2, 2 $ $6$ $2$ $( 1, 4)( 2, 5)( 3, 6)( 7,10)( 8,11)( 9,12)$
$ 4, 4, 4 $ $2$ $4$ $( 1, 4, 7,10)( 2, 5, 8,11)( 3, 6, 9,12)$
$ 4, 4, 4 $ $6$ $4$ $( 1, 4, 7,10)( 2, 5, 8,11)( 3,12, 9, 6)$
$ 2, 2, 2, 2, 2, 2 $ $2$ $2$ $( 1, 4)( 2,11)( 3, 6)( 5, 8)( 7,10)( 9,12)$
$ 2, 2, 2, 2, 2, 2 $ $1$ $2$ $( 1, 7)( 2, 8)( 3, 9)( 4,10)( 5,11)( 6,12)$

Group invariants

Order:  $192=2^{6} \cdot 3$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  [192, 1472]
Character table: Data not available.