Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $86$ | |
| Group : | $D_4\times S_4$ | |
| CHM label : | $[1/16.D(4)^{3}]S(3)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (3,9)(6,12), (1,10)(2,5)(3,12)(4,7)(6,9)(8,11), (1,7)(3,9)(5,11), (1,5)(2,10)(4,8)(7,11), (1,5,9)(2,6,10)(3,7,11)(4,8,12) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_2^2$ x 7 6: $S_3$ 8: $D_{4}$ x 2, $C_2^3$ 12: $D_{6}$ x 3 16: $D_4\times C_2$ 24: $S_4$, $S_3 \times C_2^2$ 48: $S_4\times C_2$ x 3, 12T28 96: 12T48 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 4: None
Degree 6: $D_{6}$
Low degree siblings
12T86 x 3, 16T421 x 4, 24T358 x 2, 24T393 x 2, 24T434 x 2, 24T435 x 2, 24T436 x 2, 24T437 x 4, 24T438 x 4, 24T439 x 4, 24T440 x 4, 32T2138 x 2, 32T2139 x 2, 32T2140 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $6$ | $2$ | $( 4,10)( 5,11)( 6,12)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 3, 9)( 6,12)$ |
| $ 4, 4, 1, 1, 1, 1 $ | $6$ | $4$ | $( 2, 6, 8,12)( 3, 5, 9,11)$ |
| $ 2, 2, 2, 2, 2, 1, 1 $ | $12$ | $2$ | $( 2, 6)( 3, 5)( 4,10)( 8,12)( 9,11)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $6$ | $2$ | $( 2, 6)( 3,11)( 5, 9)( 8,12)$ |
| $ 4, 4, 2, 1, 1 $ | $12$ | $4$ | $( 2, 6, 8,12)( 3,11, 9, 5)( 4,10)$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 2, 8)( 4,10)( 6,12)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $3$ | $2$ | $( 2, 8)( 3, 9)( 5,11)( 6,12)$ |
| $ 4, 2, 2, 2, 2 $ | $12$ | $4$ | $( 1, 2)( 3, 6, 9,12)( 4, 5)( 7, 8)(10,11)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $12$ | $2$ | $( 1, 2)( 3, 6)( 4,11)( 5,10)( 7, 8)( 9,12)$ |
| $ 12 $ | $16$ | $12$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12)$ |
| $ 6, 6 $ | $16$ | $6$ | $( 1, 2, 3, 4,11, 6)( 5,12, 7, 8, 9,10)$ |
| $ 4, 4, 4 $ | $12$ | $4$ | $( 1, 2, 7, 8)( 3, 6, 9,12)( 4, 5,10,11)$ |
| $ 4, 4, 2, 2 $ | $12$ | $4$ | $( 1, 2, 7, 8)( 3, 6)( 4,11,10, 5)( 9,12)$ |
| $ 6, 6 $ | $8$ | $6$ | $( 1, 3, 5, 7, 9,11)( 2, 4, 6, 8,10,12)$ |
| $ 6, 3, 3 $ | $16$ | $6$ | $( 1, 3, 5)( 2, 4,12, 8,10, 6)( 7, 9,11)$ |
| $ 3, 3, 3, 3 $ | $8$ | $3$ | $( 1, 3,11)( 2, 4, 6)( 5, 7, 9)( 8,10,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 3)( 2, 8)( 4, 6)( 5,11)( 7, 9)(10,12)$ |
| $ 4, 4, 2, 2 $ | $6$ | $4$ | $( 1, 3, 7, 9)( 2, 8)( 4, 6,10,12)( 5,11)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 4)( 2, 5)( 3, 6)( 7,10)( 8,11)( 9,12)$ |
| $ 4, 4, 4 $ | $2$ | $4$ | $( 1, 4, 7,10)( 2, 5, 8,11)( 3, 6, 9,12)$ |
| $ 4, 4, 4 $ | $6$ | $4$ | $( 1, 4, 7,10)( 2, 5, 8,11)( 3,12, 9, 6)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 4)( 2,11)( 3, 6)( 5, 8)( 7,10)( 9,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 7)( 2, 8)( 3, 9)( 4,10)( 5,11)( 6,12)$ |
Group invariants
| Order: | $192=2^{6} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [192, 1472] |
| Character table: Data not available. |