Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $84$ | |
| Group : | $PSU(3,2):C_2$ | |
| CHM label : | $[(1/3.3^{3}):2]D(4)_{4}$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,5)(2,10)(4,8)(7,11), (3,4)(6,10)(7,12)(8,11), (1,4,2,11,5,8,10,7)(3,9,12,6), (2,6,10)(3,7,11)(4,8,12) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 8: $D_{4}$ 16: $QD_{16}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 4: $D_{4}$
Degree 6: None
Low degree siblings
9T19, 18T68, 18T71, 18T73, 24T278, 24T279, 24T280, 36T171, 36T172, 36T175Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $12$ | $2$ | $( 3, 4)( 6,10)( 7,12)( 8,11)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $9$ | $2$ | $( 3,11)( 4, 8)( 5, 9)( 6,10)$ |
| $ 3, 3, 3, 1, 1, 1 $ | $8$ | $3$ | $( 2, 6,10)( 3, 7,11)( 4, 8,12)$ |
| $ 6, 3, 2, 1 $ | $24$ | $6$ | $( 2, 6,10)( 3,12,11, 8, 7, 4)( 5, 9)$ |
| $ 4, 4, 2, 2 $ | $18$ | $4$ | $( 1, 2)( 3, 4,11, 8)( 5, 6, 9,10)( 7,12)$ |
| $ 4, 4, 2, 2 $ | $36$ | $4$ | $( 1, 3)( 2, 4, 6,12)( 5,11, 9, 7)( 8,10)$ |
| $ 8, 4 $ | $18$ | $8$ | $( 1, 3, 6, 8, 9, 7, 2, 4)( 5,11,10,12)$ |
| $ 8, 4 $ | $18$ | $8$ | $( 1, 3,10, 8)( 2, 4, 9,11, 6,12, 5, 7)$ |
Group invariants
| Order: | $144=2^{4} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [144, 182] |
| Character table: |
2 4 2 4 1 1 3 2 3 3
3 2 1 . 2 1 . . . .
1a 2a 2b 3a 6a 4a 4b 8a 8b
2P 1a 1a 1a 3a 3a 2b 2b 4a 4a
3P 1a 2a 2b 1a 2a 4a 4b 8a 8b
5P 1a 2a 2b 3a 6a 4a 4b 8b 8a
7P 1a 2a 2b 3a 6a 4a 4b 8b 8a
X.1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 1 -1 1 -1 1 1
X.3 1 -1 1 1 -1 1 1 -1 -1
X.4 1 1 1 1 1 1 -1 -1 -1
X.5 2 . 2 2 . -2 . . .
X.6 2 . -2 2 . . . A -A
X.7 2 . -2 2 . . . -A A
X.8 8 -2 . -1 1 . . . .
X.9 8 2 . -1 -1 . . . .
A = -E(8)-E(8)^3
= -Sqrt(-2) = -i2
|