Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $81$ | |
| Group : | $D_6:D_6$ | |
| CHM label : | $[3^{2}:2]D(4)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,7)(3,9)(5,11), (1,5)(2,10)(4,8)(7,11), (2,6,10)(4,8,12), (1,4,7,10)(2,5,8,11)(3,6,9,12) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_2^2$ x 7 6: $S_3$ x 2 8: $D_{4}$ x 2, $C_2^3$ 12: $D_{6}$ x 6 16: $D_4\times C_2$ 24: $S_3 \times C_2^2$ x 2 36: $S_3^2$ 48: 12T28 x 2 72: 12T37 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 4: $D_{4}$
Degree 6: $S_3^2$
Low degree siblings
12T81 x 3, 24T269 x 2, 24T270 x 2, 24T271 x 2, 36T123 x 2, 36T147 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $9$ | $2$ | $( 3,11)( 4,12)( 5, 9)( 6,10)$ |
| $ 6, 1, 1, 1, 1, 1, 1 $ | $4$ | $6$ | $( 2, 4, 6, 8,10,12)$ |
| $ 2, 2, 2, 2, 2, 1, 1 $ | $18$ | $2$ | $( 2, 4)( 3,11)( 5, 9)( 6,12)( 8,10)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1 $ | $4$ | $3$ | $( 2, 6,10)( 4, 8,12)$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 2, 8)( 4,10)( 6,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 2)( 3,12)( 4,11)( 5,10)( 6, 9)( 7, 8)$ |
| $ 12 $ | $12$ | $12$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12)$ |
| $ 12 $ | $12$ | $12$ | $( 1, 2, 3,12, 5,10, 7, 8, 9, 6,11, 4)$ |
| $ 6, 6 $ | $12$ | $6$ | $( 1, 2, 5, 6, 9,10)( 3, 4, 7, 8,11,12)$ |
| $ 6, 6 $ | $12$ | $6$ | $( 1, 2, 5,10, 9, 6)( 3,12, 7, 8,11, 4)$ |
| $ 4, 4, 4 $ | $6$ | $4$ | $( 1, 2, 7, 8)( 3, 4, 9,10)( 5, 6,11,12)$ |
| $ 4, 4, 4 $ | $6$ | $4$ | $( 1, 2, 7, 8)( 3,12, 9, 6)( 4, 5,10,11)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $9$ | $2$ | $( 1, 3)( 2, 4)( 5,11)( 6,12)( 7, 9)( 8,10)$ |
| $ 6, 6 $ | $2$ | $6$ | $( 1, 3, 5, 7, 9,11)( 2, 4, 6, 8,10,12)$ |
| $ 6, 3, 3 $ | $4$ | $6$ | $( 1, 3, 5, 7, 9,11)( 2, 6,10)( 4, 8,12)$ |
| $ 6, 2, 2, 2 $ | $4$ | $6$ | $( 1, 3, 5, 7, 9,11)( 2, 8)( 4,10)( 6,12)$ |
| $ 6, 3, 3 $ | $4$ | $6$ | $( 1, 3, 5, 7, 9,11)( 2,10, 6)( 4,12, 8)$ |
| $ 6, 6 $ | $2$ | $6$ | $( 1, 3, 5, 7, 9,11)( 2,12,10, 8, 6, 4)$ |
| $ 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12)$ |
| $ 3, 3, 2, 2, 2 $ | $4$ | $6$ | $( 1, 5, 9)( 2, 8)( 3, 7,11)( 4,10)( 6,12)$ |
| $ 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 5, 9)( 2,10, 6)( 3, 7,11)( 4,12, 8)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 7)( 2, 8)( 3, 9)( 4,10)( 5,11)( 6,12)$ |
Group invariants
| Order: | $144=2^{4} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [144, 154] |
| Character table: Data not available. |