Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $78$ | |
| Group : | $C_2\times S_3\wr C_2$ | |
| CHM label : | $[2]F_{36}:2_{2}{S_{3}^{2}}$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (2,3)(6,11)(7,10), (1,3,5,7,9,11)(2,4,6,8,10,12), (1,3,5,11,9,7)(2,4,10,8,6,12), (1,12)(2,3)(4,5)(6,7)(8,9)(10,11) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_2^2$ x 7 8: $D_{4}$ x 2, $C_2^3$ 16: $D_4\times C_2$ 72: $C_3^2:D_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 4: $D_{4}$
Degree 6: $C_3^2:D_4$
Low degree siblings
12T77 x 4, 12T78 x 3, 18T63 x 4, 24T261 x 4, 24T262 x 4, 24T263 x 2, 24T264 x 2, 36T157 x 2, 36T159 x 4, 36T165 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $9$ | $2$ | $( 4, 8)( 5, 9)( 6,10)( 7,11)$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $6$ | $2$ | $( 2, 3)( 6,11)( 7,10)$ |
| $ 2, 2, 2, 2, 2, 1, 1 $ | $6$ | $2$ | $( 2, 3)( 4, 8)( 5, 9)( 6, 7)(10,11)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1 $ | $4$ | $3$ | $( 2, 6,10)( 3, 7,11)$ |
| $ 6, 2, 2, 1, 1 $ | $12$ | $6$ | $( 2, 7,10, 3, 6,11)( 4, 8)( 5, 9)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 2)( 3,12)( 4, 7)( 5, 6)( 8,11)( 9,10)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 2)( 3,12)( 4,11)( 5,10)( 6, 9)( 7, 8)$ |
| $ 4, 4, 4 $ | $18$ | $4$ | $( 1, 2, 4, 7)( 3, 5, 6,12)( 8,11, 9,10)$ |
| $ 4, 4, 4 $ | $18$ | $4$ | $( 1, 2, 4,11)( 3, 5,10,12)( 6, 8, 7, 9)$ |
| $ 6, 6 $ | $12$ | $6$ | $( 1, 2, 5, 6, 9,10)( 3, 4, 7, 8,11,12)$ |
| $ 6, 6 $ | $12$ | $6$ | $( 1, 2, 5,10, 9, 6)( 3, 4,11, 8, 7,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $9$ | $2$ | $( 1, 4)( 2, 3)( 5,12)( 6,11)( 7,10)( 8, 9)$ |
| $ 6, 2, 2, 2 $ | $4$ | $6$ | $( 1, 4, 9,12, 5, 8)( 2, 3)( 6, 7)(10,11)$ |
| $ 3, 3, 2, 2, 2 $ | $12$ | $6$ | $( 1, 4)( 2, 6,10)( 3, 7,11)( 5,12)( 8, 9)$ |
| $ 6, 6 $ | $4$ | $6$ | $( 1, 4, 9,12, 5, 8)( 2, 7,10, 3, 6,11)$ |
| $ 3, 3, 3, 3 $ | $4$ | $3$ | $( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,12)( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)$ |
Group invariants
| Order: | $144=2^{4} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [144, 186] |
| Character table: |
2 4 4 3 3 2 2 3 3 3 3 2 2 4 2 2 2 2 4
3 2 . 1 1 2 1 1 1 . . 1 1 . 2 1 2 2 2
1a 2a 2b 2c 3a 6a 2d 2e 4a 4b 6b 6c 2f 6d 6e 6f 3b 2g
2P 1a 1a 1a 1a 3a 3a 1a 1a 2f 2f 3b 3b 1a 3a 3a 3b 3b 1a
3P 1a 2a 2b 2c 1a 2c 2d 2e 4a 4b 2d 2e 2f 2g 2b 2g 1a 2g
5P 1a 2a 2b 2c 3a 6a 2d 2e 4a 4b 6b 6c 2f 6d 6e 6f 3b 2g
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 -1 1 1 1 -1 1 1 -1 -1 1 1 -1 -1 -1 1 -1
X.3 1 -1 -1 1 1 1 1 -1 -1 1 1 -1 1 -1 -1 -1 1 -1
X.4 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 1 -1 1 -1 1 -1
X.5 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1
X.6 1 1 -1 -1 1 -1 -1 -1 1 1 -1 -1 1 1 -1 1 1 1
X.7 1 1 -1 -1 1 -1 1 1 -1 -1 1 1 1 1 -1 1 1 1
X.8 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1
X.9 2 -2 . . 2 . . . . . . . -2 2 . 2 2 2
X.10 2 2 . . 2 . . . . . . . -2 -2 . -2 2 -2
X.11 4 . -2 -2 1 1 . . . . . . . 1 1 -2 -2 4
X.12 4 . -2 2 1 -1 . . . . . . . -1 1 2 -2 -4
X.13 4 . . . -2 . -2 -2 . . 1 1 . -2 . 1 1 4
X.14 4 . . . -2 . -2 2 . . 1 -1 . 2 . -1 1 -4
X.15 4 . . . -2 . 2 -2 . . -1 1 . 2 . -1 1 -4
X.16 4 . . . -2 . 2 2 . . -1 -1 . -2 . 1 1 4
X.17 4 . 2 -2 1 1 . . . . . . . -1 -1 2 -2 -4
X.18 4 . 2 2 1 -1 . . . . . . . 1 -1 -2 -2 4
|