Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $77$ | |
| Group : | $C_2\times S_3\wr C_2$ | |
| CHM label : | $[S(3)^{2}]E(4)$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,10)(2,5)(3,12)(4,7)(6,9)(8,11), (2,6,10)(4,8,12), (2,10)(4,8), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_2^2$ x 7 8: $D_{4}$ x 2, $C_2^3$ 16: $D_4\times C_2$ 72: $C_3^2:D_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 3: None
Degree 4: $C_2^2$
Degree 6: $C_3^2:D_4$
Low degree siblings
12T77 x 3, 12T78 x 4, 18T63 x 4, 24T261 x 4, 24T262 x 4, 24T263 x 2, 24T264 x 2, 36T157 x 2, 36T159 x 4, 36T165 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $6$ | $2$ | $( 4,12)( 6,10)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $9$ | $2$ | $( 3,11)( 4,12)( 5, 9)( 6,10)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1 $ | $4$ | $3$ | $( 2, 6,10)( 4, 8,12)$ |
| $ 3, 3, 2, 2, 1, 1 $ | $12$ | $6$ | $( 2, 6,10)( 3,11)( 4, 8,12)( 5, 9)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)$ |
| $ 4, 4, 2, 2 $ | $18$ | $4$ | $( 1, 2)( 3, 4,11,12)( 5, 6, 9,10)( 7, 8)$ |
| $ 6, 6 $ | $12$ | $6$ | $( 1, 2, 5, 6, 9,10)( 3, 4, 7, 8,11,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $9$ | $2$ | $( 1, 3)( 2, 4)( 5,11)( 6,12)( 7, 9)( 8,10)$ |
| $ 6, 2, 2, 2 $ | $12$ | $6$ | $( 1, 3)( 2, 4, 6, 8,10,12)( 5,11)( 7, 9)$ |
| $ 6, 6 $ | $4$ | $6$ | $( 1, 3, 5, 7, 9,11)( 2, 4, 6, 8,10,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 3)( 2, 8)( 4,10)( 5,11)( 6,12)( 7, 9)$ |
| $ 6, 2, 2, 2 $ | $4$ | $6$ | $( 1, 3, 5, 7, 9,11)( 2, 8)( 4,10)( 6,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 4)( 2, 3)( 5,12)( 6,11)( 7,10)( 8, 9)$ |
| $ 4, 4, 2, 2 $ | $18$ | $4$ | $( 1, 4, 5,12)( 2, 3)( 6, 7,10,11)( 8, 9)$ |
| $ 6, 6 $ | $12$ | $6$ | $( 1, 4, 5, 8, 9,12)( 2, 3, 6, 7,10,11)$ |
| $ 3, 3, 3, 3 $ | $4$ | $3$ | $( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 7)( 2, 8)( 3, 9)( 4,10)( 5,11)( 6,12)$ |
Group invariants
| Order: | $144=2^{4} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [144, 186] |
| Character table: |
2 4 3 4 2 2 3 3 2 4 2 2 3 2 3 3 2 2 4
3 2 1 . 2 1 1 . 1 . 1 2 1 2 1 . 1 2 2
1a 2a 2b 3a 6a 2c 4a 6b 2d 6c 6d 2e 6e 2f 4b 6f 3b 2g
2P 1a 1a 1a 3a 3a 1a 2b 3b 1a 3a 3b 1a 3a 1a 2b 3b 3b 1a
3P 1a 2a 2b 1a 2a 2c 4a 2c 2d 2e 2g 2e 2g 2f 4b 2f 1a 2g
5P 1a 2a 2b 3a 6a 2c 4a 6b 2d 6c 6d 2e 6e 2f 4b 6f 3b 2g
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 1 -1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1
X.3 1 -1 1 1 -1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 1
X.4 1 -1 1 1 -1 1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1
X.5 1 -1 1 1 -1 1 -1 1 1 -1 1 -1 1 1 -1 1 1 1
X.6 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 -1
X.7 1 1 1 1 1 -1 -1 -1 1 1 1 1 1 -1 -1 -1 1 1
X.8 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1
X.9 2 . -2 2 . . . . -2 . 2 . 2 . . . 2 2
X.10 2 . -2 2 . . . . 2 . -2 . -2 . . . 2 -2
X.11 4 -2 . 1 1 . . . . -1 2 2 -1 . . . -2 -4
X.12 4 -2 . 1 1 . . . . 1 -2 -2 1 . . . -2 4
X.13 4 . . -2 . -2 . 1 . . -1 . 2 2 . -1 1 -4
X.14 4 . . -2 . -2 . 1 . . 1 . -2 -2 . 1 1 4
X.15 4 . . -2 . 2 . -1 . . -1 . 2 -2 . 1 1 -4
X.16 4 . . -2 . 2 . -1 . . 1 . -2 2 . -1 1 4
X.17 4 2 . 1 -1 . . . . -1 -2 2 1 . . . -2 4
X.18 4 2 . 1 -1 . . . . 1 2 -2 -1 . . . -2 -4
|