Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $74$ | |
| Group : | $S_5$ | |
| CHM label : | $S_{5}(12)$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (2,4,6,8,10)(3,5,7,9,11), (1,10)(2,7)(3,12)(4,5)(6,11)(8,9) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 4: None
Degree 6: $\PGL(2,5)$
Low degree siblings
5T5, 6T14, 10T12, 10T13, 15T10, 20T30, 20T32, 20T35, 24T202, 30T22, 30T25, 30T27, 40T62Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $15$ | $2$ | $( 3, 7)( 4,10)( 6, 8)( 9,11)$ |
| $ 5, 5, 1, 1 $ | $24$ | $5$ | $( 2, 4, 6, 8,10)( 3, 5, 7, 9,11)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $10$ | $2$ | $( 1, 2)( 3, 6)( 4,11)( 5,12)( 7, 8)( 9,10)$ |
| $ 6, 6 $ | $20$ | $6$ | $( 1, 2, 3, 4,11, 6)( 5,10, 7, 8, 9,12)$ |
| $ 4, 4, 2, 2 $ | $30$ | $4$ | $( 1, 2, 3, 8)( 4, 7)( 5,10,11,12)( 6, 9)$ |
| $ 3, 3, 3, 3 $ | $20$ | $3$ | $( 1, 3, 9)( 2, 4, 8)( 5, 7,11)( 6,12,10)$ |
Group invariants
| Order: | $120=2^{3} \cdot 3 \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | [120, 34] |
| Character table: |
2 3 3 . 2 1 2 1
3 1 . . 1 1 . 1
5 1 . 1 . . . .
1a 2a 5a 2b 6a 4a 3a
2P 1a 1a 5a 1a 3a 2a 3a
3P 1a 2a 5a 2b 2b 4a 1a
5P 1a 2a 1a 2b 6a 4a 3a
X.1 1 1 1 1 1 1 1
X.2 1 1 1 -1 -1 -1 1
X.3 4 . -1 -2 1 . 1
X.4 4 . -1 2 -1 . 1
X.5 5 1 . 1 1 -1 -1
X.6 5 1 . -1 -1 1 -1
X.7 6 -2 1 . . . .
|