Properties

Label 12T70
Order \(108\)
n \(12\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No
Group: $C_3\times S_3^2$

Related objects

Learn more about

Group action invariants

Degree $n$ :  $12$
Transitive number $t$ :  $70$
Group :  $C_3\times S_3^2$
CHM label :  $1/2[3^{3}:2]E(4)$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,2)(3,12)(4,11)(5,10)(6,9)(7,8), (2,6,10)(3,7,11)(4,8,12), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)
$|\Aut(F/K)|$:  $3$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
3:  $C_3$
4:  $C_2^2$
6:  $S_3$ x 2, $C_6$ x 3
12:  $D_{6}$ x 2, $C_6\times C_2$
18:  $S_3\times C_3$ x 2
36:  $S_3^2$, $C_6\times S_3$ x 2

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$ x 3

Degree 3: None

Degree 4: $C_2^2$

Degree 6: None

Low degree siblings

18T43, 18T46 x 2, 27T36, 36T80, 36T82 x 2, 36T92

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 3, 3, 1, 1, 1, 1, 1, 1 $ $2$ $3$ $( 3, 7,11)( 4,12, 8)$
$ 3, 3, 1, 1, 1, 1, 1, 1 $ $2$ $3$ $( 3,11, 7)( 4, 8,12)$
$ 3, 3, 1, 1, 1, 1, 1, 1 $ $4$ $3$ $( 2, 6,10)( 4,12, 8)$
$ 3, 3, 3, 1, 1, 1 $ $4$ $3$ $( 2, 6,10)( 3, 7,11)( 4, 8,12)$
$ 3, 3, 1, 1, 1, 1, 1, 1 $ $2$ $3$ $( 2, 6,10)( 3,11, 7)$
$ 3, 3, 1, 1, 1, 1, 1, 1 $ $2$ $3$ $( 2,10, 6)( 3, 7,11)$
$ 3, 3, 3, 1, 1, 1 $ $4$ $3$ $( 2,10, 6)( 3,11, 7)( 4,12, 8)$
$ 6, 2, 2, 2 $ $6$ $6$ $( 1, 2)( 3, 4, 7,12,11, 8)( 5,10)( 6, 9)$
$ 6, 2, 2, 2 $ $6$ $6$ $( 1, 2)( 3, 8,11,12, 7, 4)( 5,10)( 6, 9)$
$ 2, 2, 2, 2, 2, 2 $ $3$ $2$ $( 1, 2)( 3,12)( 4,11)( 5,10)( 6, 9)( 7, 8)$
$ 6, 6 $ $3$ $6$ $( 1, 2, 5,10, 9, 6)( 3, 8, 7, 4,11,12)$
$ 6, 6 $ $6$ $6$ $( 1, 2, 5,10, 9, 6)( 3,12,11, 4, 7, 8)$
$ 6, 6 $ $3$ $6$ $( 1, 2, 9, 6, 5,10)( 3, 4,11, 8, 7,12)$
$ 2, 2, 2, 2, 2, 2 $ $9$ $2$ $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,11)(10,12)$
$ 6, 6 $ $9$ $6$ $( 1, 3, 5, 7, 9,11)( 2, 4,10,12, 6, 8)$
$ 6, 6 $ $9$ $6$ $( 1, 3, 9,11, 5, 7)( 2, 4, 6, 8,10,12)$
$ 6, 2, 2, 2 $ $6$ $6$ $( 1, 4, 5,12, 9, 8)( 2, 3)( 6,11)( 7,10)$
$ 6, 2, 2, 2 $ $6$ $6$ $( 1, 4)( 2, 3, 6,11,10, 7)( 5,12)( 8, 9)$
$ 6, 6 $ $6$ $6$ $( 1, 4, 9, 8, 5,12)( 2, 3,10, 7, 6,11)$
$ 6, 6 $ $3$ $6$ $( 1, 4, 9, 8, 5,12)( 2,11, 6, 7,10, 3)$
$ 6, 6 $ $3$ $6$ $( 1, 4, 5,12, 9, 8)( 2,11,10, 3, 6, 7)$
$ 2, 2, 2, 2, 2, 2 $ $3$ $2$ $( 1, 4)( 2,11)( 3,10)( 5,12)( 6, 7)( 8, 9)$
$ 3, 3, 3, 3 $ $2$ $3$ $( 1, 5, 9)( 2, 6,10)( 3,11, 7)( 4,12, 8)$
$ 3, 3, 3, 3 $ $1$ $3$ $( 1, 5, 9)( 2,10, 6)( 3, 7,11)( 4,12, 8)$
$ 3, 3, 3, 3 $ $2$ $3$ $( 1, 5, 9)( 2,10, 6)( 3,11, 7)( 4, 8,12)$
$ 3, 3, 3, 3 $ $1$ $3$ $( 1, 9, 5)( 2, 6,10)( 3,11, 7)( 4, 8,12)$

Group invariants

Order:  $108=2^{2} \cdot 3^{3}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  [108, 38]
Character table: Data not available.