Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $70$ | |
| Group : | $C_3\times S_3^2$ | |
| CHM label : | $1/2[3^{3}:2]E(4)$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2)(3,12)(4,11)(5,10)(6,9)(7,8), (2,6,10)(3,7,11)(4,8,12), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12) | |
| $|\Aut(F/K)|$: | $3$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 3: $C_3$ 4: $C_2^2$ 6: $S_3$ x 2, $C_6$ x 3 12: $D_{6}$ x 2, $C_6\times C_2$ 18: $S_3\times C_3$ x 2 36: $S_3^2$, $C_6\times S_3$ x 2 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 3: None
Degree 4: $C_2^2$
Degree 6: None
Low degree siblings
18T43, 18T46 x 2, 27T36, 36T80, 36T82 x 2, 36T92Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1 $ | $2$ | $3$ | $( 3, 7,11)( 4,12, 8)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1 $ | $2$ | $3$ | $( 3,11, 7)( 4, 8,12)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1 $ | $4$ | $3$ | $( 2, 6,10)( 4,12, 8)$ |
| $ 3, 3, 3, 1, 1, 1 $ | $4$ | $3$ | $( 2, 6,10)( 3, 7,11)( 4, 8,12)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1 $ | $2$ | $3$ | $( 2, 6,10)( 3,11, 7)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1 $ | $2$ | $3$ | $( 2,10, 6)( 3, 7,11)$ |
| $ 3, 3, 3, 1, 1, 1 $ | $4$ | $3$ | $( 2,10, 6)( 3,11, 7)( 4,12, 8)$ |
| $ 6, 2, 2, 2 $ | $6$ | $6$ | $( 1, 2)( 3, 4, 7,12,11, 8)( 5,10)( 6, 9)$ |
| $ 6, 2, 2, 2 $ | $6$ | $6$ | $( 1, 2)( 3, 8,11,12, 7, 4)( 5,10)( 6, 9)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $3$ | $2$ | $( 1, 2)( 3,12)( 4,11)( 5,10)( 6, 9)( 7, 8)$ |
| $ 6, 6 $ | $3$ | $6$ | $( 1, 2, 5,10, 9, 6)( 3, 8, 7, 4,11,12)$ |
| $ 6, 6 $ | $6$ | $6$ | $( 1, 2, 5,10, 9, 6)( 3,12,11, 4, 7, 8)$ |
| $ 6, 6 $ | $3$ | $6$ | $( 1, 2, 9, 6, 5,10)( 3, 4,11, 8, 7,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $9$ | $2$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,11)(10,12)$ |
| $ 6, 6 $ | $9$ | $6$ | $( 1, 3, 5, 7, 9,11)( 2, 4,10,12, 6, 8)$ |
| $ 6, 6 $ | $9$ | $6$ | $( 1, 3, 9,11, 5, 7)( 2, 4, 6, 8,10,12)$ |
| $ 6, 2, 2, 2 $ | $6$ | $6$ | $( 1, 4, 5,12, 9, 8)( 2, 3)( 6,11)( 7,10)$ |
| $ 6, 2, 2, 2 $ | $6$ | $6$ | $( 1, 4)( 2, 3, 6,11,10, 7)( 5,12)( 8, 9)$ |
| $ 6, 6 $ | $6$ | $6$ | $( 1, 4, 9, 8, 5,12)( 2, 3,10, 7, 6,11)$ |
| $ 6, 6 $ | $3$ | $6$ | $( 1, 4, 9, 8, 5,12)( 2,11, 6, 7,10, 3)$ |
| $ 6, 6 $ | $3$ | $6$ | $( 1, 4, 5,12, 9, 8)( 2,11,10, 3, 6, 7)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $3$ | $2$ | $( 1, 4)( 2,11)( 3,10)( 5,12)( 6, 7)( 8, 9)$ |
| $ 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 5, 9)( 2, 6,10)( 3,11, 7)( 4,12, 8)$ |
| $ 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 5, 9)( 2,10, 6)( 3, 7,11)( 4,12, 8)$ |
| $ 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 5, 9)( 2,10, 6)( 3,11, 7)( 4, 8,12)$ |
| $ 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 9, 5)( 2, 6,10)( 3,11, 7)( 4, 8,12)$ |
Group invariants
| Order: | $108=2^{2} \cdot 3^{3}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [108, 38] |
| Character table: Data not available. |