Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $7$ | |
| Group : | $A_4 \times C_2$ | |
| CHM label : | $A_{4}(6)[x]2=[1/8.2^{6}]3$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (2,8)(3,9)(4,10)(5,11), (1,5,9)(2,6,10)(3,7,11)(4,8,12), (1,12)(2,3)(4,5)(6,7)(8,9)(10,11) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 6: $C_6$ 12: $A_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $C_3$
Degree 4: None
Degree 6: $C_6$, $A_4$, $A_4\times C_2$
Low degree siblings
6T6, 8T13, 12T6, 24T9Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $3$ | $2$ | $( 2, 8)( 3, 9)( 4,10)( 5,11)$ |
| $ 6, 6 $ | $4$ | $6$ | $( 1, 2, 5,12, 3, 4)( 6, 9,10, 7, 8,11)$ |
| $ 3, 3, 3, 3 $ | $4$ | $3$ | $( 1, 3, 5)( 2, 4,12)( 6, 8,10)( 7, 9,11)$ |
| $ 6, 6 $ | $4$ | $6$ | $( 1, 4, 3,12, 5, 2)( 6,11, 8, 7,10, 9)$ |
| $ 3, 3, 3, 3 $ | $4$ | $3$ | $( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $3$ | $2$ | $( 1, 6)( 2, 3)( 4,11)( 5,10)( 7,12)( 8, 9)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,12)( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)$ |
Group invariants
| Order: | $24=2^{3} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [24, 13] |
| Character table: |
2 3 3 1 1 1 1 3 3
3 1 . 1 1 1 1 . 1
1a 2a 6a 3a 6b 3b 2b 2c
2P 1a 1a 3b 3b 3a 3a 1a 1a
3P 1a 2a 2c 1a 2c 1a 2b 2c
5P 1a 2a 6b 3b 6a 3a 2b 2c
X.1 1 1 1 1 1 1 1 1
X.2 1 1 -1 1 -1 1 -1 -1
X.3 1 1 A -A /A -/A -1 -1
X.4 1 1 /A -/A A -A -1 -1
X.5 1 1 -/A -/A -A -A 1 1
X.6 1 1 -A -A -/A -/A 1 1
X.7 3 -1 . . . . 1 -3
X.8 3 -1 . . . . -1 3
A = -E(3)
= (1-Sqrt(-3))/2 = -b3
|