Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $65$ | |
| Group : | $C_4^2:C_3:C_2$ | |
| CHM label : | $[1/2[1/2.2^{2}]^{3}]S_{4}(6c)_{4}$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,12)(2,3)(6,7)(8,9), (1,5)(2,9)(3,8)(4,12)(6,11)(7,10), (1,5,9)(2,6,10)(3,7,11)(4,8,12), (1,3)(2,12)(4,10)(5,11)(6,8)(7,9) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 6: $S_3$ 24: $S_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$
Degree 4: None
Degree 6: $S_4$
Low degree siblings
12T62, 12T63, 12T64, 16T195, 24T191, 24T192, 24T193, 24T194, 32T399Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $3$ | $2$ | $( 2, 3)( 4, 5)( 8, 9)(10,11)$ |
| $ 8, 2, 1, 1 $ | $12$ | $8$ | $( 2, 4, 9,11, 3, 5, 8,10)( 6, 7)$ |
| $ 4, 4, 1, 1, 1, 1 $ | $3$ | $4$ | $( 2, 8, 3, 9)( 4,10, 5,11)$ |
| $ 4, 4, 1, 1, 1, 1 $ | $3$ | $4$ | $( 2, 9, 3, 8)( 4,11, 5,10)$ |
| $ 8, 2, 1, 1 $ | $12$ | $8$ | $( 2,10, 8, 5, 3,11, 9, 4)( 6, 7)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $12$ | $2$ | $( 1, 2)( 3,12)( 4,10)( 5,11)( 6, 9)( 7, 8)$ |
| $ 3, 3, 3, 3 $ | $32$ | $3$ | $( 1, 2, 4)( 3, 5,12)( 6, 8,11)( 7, 9,10)$ |
| $ 4, 4, 2, 2 $ | $12$ | $4$ | $( 1, 2,12, 3)( 4,11)( 5,10)( 6, 9, 7, 8)$ |
| $ 4, 4, 2, 2 $ | $6$ | $4$ | $( 1, 6,12, 7)( 2, 3)( 4,11, 5,10)( 8, 9)$ |
Group invariants
| Order: | $96=2^{5} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [96, 64] |
| Character table: |
2 5 5 3 5 5 3 3 . 3 4
3 1 . . . . . . 1 . .
1a 2a 8a 4a 4b 8b 2b 3a 4c 4d
2P 1a 1a 4b 2a 2a 4a 1a 3a 2a 2a
3P 1a 2a 8b 4b 4a 8a 2b 1a 4c 4d
5P 1a 2a 8a 4a 4b 8b 2b 3a 4c 4d
7P 1a 2a 8b 4b 4a 8a 2b 3a 4c 4d
X.1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 -1 1 1 -1 -1 1 -1 1
X.3 2 2 . 2 2 . . -1 . 2
X.4 3 3 -1 -1 -1 -1 1 . 1 -1
X.5 3 3 1 -1 -1 1 -1 . -1 -1
X.6 3 -1 A B /B -A 1 . -1 1
X.7 3 -1 -A /B B A 1 . -1 1
X.8 3 -1 A /B B -A -1 . 1 1
X.9 3 -1 -A B /B A -1 . 1 1
X.10 6 -2 . 2 2 . . . . -2
A = -E(4)
= -Sqrt(-1) = -i
B = -1-2*E(4)
= -1-2*Sqrt(-1) = -1-2i
|