Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $62$ | |
| Group : | $C_4^2:C_3:C_2$ | |
| CHM label : | $[4^{2}]S(3)$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,5)(2,10)(4,8)(7,11), (1,10,7,4)(3,6,9,12), (1,5,9)(2,6,10)(3,7,11)(4,8,12) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 6: $S_3$ 24: $S_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$
Degree 4: None
Degree 6: $S_4$
Low degree siblings
12T63, 12T64, 12T65, 16T195, 24T191, 24T192, 24T193, 24T194, 32T399Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $12$ | $2$ | $( 2, 3)( 5, 6)( 8, 9)(11,12)$ |
| $ 4, 4, 1, 1, 1, 1 $ | $6$ | $4$ | $( 2, 5, 8,11)( 3,12, 9, 6)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $3$ | $2$ | $( 2, 8)( 3, 9)( 5,11)( 6,12)$ |
| $ 3, 3, 3, 3 $ | $32$ | $3$ | $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,11,12)$ |
| $ 8, 4 $ | $12$ | $8$ | $( 1, 2, 4, 5, 7, 8,10,11)( 3,12, 9, 6)$ |
| $ 4, 4, 2, 2 $ | $12$ | $4$ | $( 1, 2, 7, 8)( 3, 9)( 4, 5,10,11)( 6,12)$ |
| $ 8, 4 $ | $12$ | $8$ | $( 1, 2,10,11, 7, 8, 4, 5)( 3, 6, 9,12)$ |
| $ 4, 4, 2, 2 $ | $3$ | $4$ | $( 1, 4, 7,10)( 2, 5, 8,11)( 3, 9)( 6,12)$ |
| $ 4, 4, 2, 2 $ | $3$ | $4$ | $( 1, 7)( 2,11, 8, 5)( 3,12, 9, 6)( 4,10)$ |
Group invariants
| Order: | $96=2^{5} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [96, 64] |
| Character table: |
2 5 3 4 5 . 3 3 3 5 5
3 1 . . . 1 . . . . .
1a 2a 4a 2b 3a 8a 4b 8b 4c 4d
2P 1a 1a 2b 1a 3a 4c 2b 4d 2b 2b
3P 1a 2a 4a 2b 1a 8b 4b 8a 4d 4c
5P 1a 2a 4a 2b 3a 8a 4b 8b 4c 4d
7P 1a 2a 4a 2b 3a 8b 4b 8a 4d 4c
X.1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 1 1 -1 -1 -1 1 1
X.3 2 . 2 2 -1 . . . 2 2
X.4 3 -1 -1 3 . 1 -1 1 -1 -1
X.5 3 1 -1 3 . -1 1 -1 -1 -1
X.6 3 -1 1 -1 . A 1 -A B /B
X.7 3 -1 1 -1 . -A 1 A /B B
X.8 3 1 1 -1 . A -1 -A /B B
X.9 3 1 1 -1 . -A -1 A B /B
X.10 6 . -2 -2 . . . . 2 2
A = -E(4)
= -Sqrt(-1) = -i
B = -1-2*E(4)
= -1-2*Sqrt(-1) = -1-2i
|