Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $61$ | |
| Group : | $C_4:D_4:C_3$ | |
| CHM label : | $[2^{3}]A_{4}(6)_{4}$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (2,8)(3,9)(4,11)(5,10)(6,7), (1,12)(2,3)(6,7)(8,9), (1,12)(2,3)(4,5), (1,5,9)(2,6,10)(3,7,11)(4,8,12) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 6: $C_6$ 12: $A_4$ 24: $A_4\times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $C_3$
Degree 4: None
Degree 6: $A_4$
Low degree siblings
12T60 x 2, 12T61, 16T185, 24T187 x 2, 24T188 x 2, 24T189, 24T190, 32T391Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 4, 5)( 6, 7)( 8, 9)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $3$ | $2$ | $( 2, 3)( 4, 5)( 8, 9)(10,11)$ |
| $ 4, 4, 1, 1, 1, 1 $ | $6$ | $4$ | $( 2, 8, 3, 9)( 4,10, 5,11)$ |
| $ 2, 2, 2, 2, 2, 1, 1 $ | $12$ | $2$ | $( 2, 8)( 3, 9)( 4,11)( 5,10)( 6, 7)$ |
| $ 3, 3, 3, 3 $ | $16$ | $3$ | $( 1, 2, 4)( 3, 5,12)( 6, 8,11)( 7, 9,10)$ |
| $ 6, 3, 3 $ | $16$ | $6$ | $( 1, 2, 4,12, 3, 5)( 6, 9,11)( 7, 8,10)$ |
| $ 3, 3, 3, 3 $ | $16$ | $3$ | $( 1, 4, 2)( 3,12, 5)( 6,11, 8)( 7,10, 9)$ |
| $ 6, 3, 3 $ | $16$ | $6$ | $( 1, 4, 3,12, 5, 2)( 6,10, 9)( 7,11, 8)$ |
| $ 4, 4, 2, 2 $ | $6$ | $4$ | $( 1, 6,12, 7)( 2, 3)( 4,11, 5,10)( 8, 9)$ |
Group invariants
| Order: | $96=2^{5} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [96, 72] |
| Character table: |
2 5 3 5 4 3 1 1 1 1 4
3 1 1 . . . 1 1 1 1 .
1a 2a 2b 4a 2c 3a 6a 3b 6b 4b
2P 1a 1a 1a 2b 1a 3b 3b 3a 3a 2b
3P 1a 2a 2b 4a 2c 1a 2a 1a 2a 4b
5P 1a 2a 2b 4a 2c 3b 6b 3a 6a 4b
X.1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 1 -1 1 -1 1 -1 1
X.3 1 -1 1 1 -1 A -A /A -/A 1
X.4 1 -1 1 1 -1 /A -/A A -A 1
X.5 1 1 1 1 1 A A /A /A 1
X.6 1 1 1 1 1 /A /A A A 1
X.7 3 -3 3 -1 1 . . . . -1
X.8 3 3 3 -1 -1 . . . . -1
X.9 6 . -2 -2 . . . . . 2
X.10 6 . -2 2 . . . . . -2
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
|