Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $58$ | |
| Group : | $C_2^2\wr C_2:C_3$ | |
| CHM label : | $[2^{4}]6$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,3,5,7,9,11)(2,4,6,8,10,12), (1,12)(8,9), (1,12)(4,5) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 6: $C_6$ 12: $A_4$ 24: $A_4\times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $C_3$
Degree 4: None
Degree 6: $C_6$
Low degree siblings
8T33 x 2, 12T58, 12T59 x 2, 16T183, 24T181 x 2, 24T182 x 2, 24T183 x 2, 24T184 x 2, 24T185, 24T186, 32T389Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $6$ | $2$ | $( 6, 7)(10,11)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $6$ | $2$ | $( 4, 5)( 6, 7)( 8, 9)(10,11)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $3$ | $2$ | $( 2, 3)( 4, 5)( 8, 9)(10,11)$ |
| $ 6, 6 $ | $16$ | $6$ | $( 1, 2, 4, 6, 8,11)( 3, 5, 7, 9,10,12)$ |
| $ 3, 3, 3, 3 $ | $16$ | $3$ | $( 1, 4, 8)( 2, 6,10)( 3, 7,11)( 5, 9,12)$ |
| $ 4, 4, 2, 2 $ | $12$ | $4$ | $( 1, 6)( 2, 8, 3, 9)( 4,10, 5,11)( 7,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 6)( 2, 8)( 3, 9)( 4,11)( 5,10)( 7,12)$ |
| $ 3, 3, 3, 3 $ | $16$ | $3$ | $( 1, 8, 4)( 2,10, 6)( 3,11, 7)( 5,12, 9)$ |
| $ 6, 6 $ | $16$ | $6$ | $( 1,10, 9, 6, 4, 2)( 3,12,11, 8, 7, 5)$ |
Group invariants
| Order: | $96=2^{5} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [96, 70] |
| Character table: |
2 5 4 4 5 1 1 3 3 1 1
3 1 . . . 1 1 . 1 1 1
1a 2a 2b 2c 6a 3a 4a 2d 3b 6b
2P 1a 1a 1a 1a 3a 3b 2c 1a 3a 3b
3P 1a 2a 2b 2c 2d 1a 4a 2d 1a 2d
5P 1a 2a 2b 2c 6b 3b 4a 2d 3a 6a
X.1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 -1 1 -1 -1 1 -1
X.3 1 1 1 1 A -/A -1 -1 -A /A
X.4 1 1 1 1 /A -A -1 -1 -/A A
X.5 1 1 1 1 -/A -A 1 1 -/A -A
X.6 1 1 1 1 -A -/A 1 1 -A -/A
X.7 3 -1 -1 3 . . -1 3 . .
X.8 3 -1 -1 3 . . 1 -3 . .
X.9 6 -2 2 -2 . . . . . .
X.10 6 2 -2 -2 . . . . . .
A = -E(3)
= (1-Sqrt(-3))/2 = -b3
|