Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $55$ | |
| Group : | $C_2\times C_4^2:C_3$ | |
| CHM label : | $[1/2.4^{3}]3$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (3,9)(6,12), (1,10,7,4)(3,6,9,12), (1,5,9)(2,6,10)(3,7,11)(4,8,12) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 6: $C_6$ 12: $A_4$ 24: $A_4\times C_2$ 48: 12T31 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $C_3$
Degree 4: None
Degree 6: $A_4$
Low degree siblings
12T55, 24T173, 24T174 x 2, 24T175 x 2, 32T416Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 3, 9)( 6,12)$ |
| $ 4, 4, 1, 1, 1, 1 $ | $3$ | $4$ | $( 2, 5, 8,11)( 3, 6, 9,12)$ |
| $ 4, 4, 1, 1, 1, 1 $ | $3$ | $4$ | $( 2, 5, 8,11)( 3,12, 9, 6)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $3$ | $2$ | $( 2, 8)( 3, 9)( 5,11)( 6,12)$ |
| $ 4, 4, 1, 1, 1, 1 $ | $3$ | $4$ | $( 2,11, 8, 5)( 3, 6, 9,12)$ |
| $ 4, 4, 1, 1, 1, 1 $ | $3$ | $4$ | $( 2,11, 8, 5)( 3,12, 9, 6)$ |
| $ 3, 3, 3, 3 $ | $16$ | $3$ | $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,11,12)$ |
| $ 6, 6 $ | $16$ | $6$ | $( 1, 2, 3, 7, 8, 9)( 4, 5, 6,10,11,12)$ |
| $ 3, 3, 3, 3 $ | $16$ | $3$ | $( 1, 3, 2)( 4, 6, 5)( 7, 9, 8)(10,12,11)$ |
| $ 6, 6 $ | $16$ | $6$ | $( 1, 3, 8, 7, 9, 2)( 4, 6,11,10,12, 5)$ |
| $ 4, 4, 2, 2 $ | $3$ | $4$ | $( 1, 4, 7,10)( 2, 5, 8,11)( 3, 9)( 6,12)$ |
| $ 4, 4, 2, 2 $ | $3$ | $4$ | $( 1, 4, 7,10)( 2, 8)( 3,12, 9, 6)( 5,11)$ |
| $ 4, 4, 2, 2 $ | $3$ | $4$ | $( 1, 4, 7,10)( 2,11, 8, 5)( 3, 9)( 6,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 7)( 2, 8)( 3, 9)( 4,10)( 5,11)( 6,12)$ |
| $ 4, 4, 2, 2 $ | $3$ | $4$ | $( 1, 7)( 2,11, 8, 5)( 3,12, 9, 6)( 4,10)$ |
Group invariants
| Order: | $96=2^{5} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [96, 68] |
| Character table: |
2 5 5 5 5 5 5 5 1 1 1 1 5 5 5 5 5
3 1 . . . . . . 1 1 1 1 . . . 1 .
1a 2a 4a 4b 2b 4c 4d 3a 6a 3b 6b 4e 4f 4g 2c 4h
2P 1a 1a 2b 2b 1a 2b 2b 3b 3b 3a 3a 2b 2b 2b 1a 2b
3P 1a 2a 4d 4c 2b 4b 4a 1a 2c 1a 2c 4h 4g 4f 2c 4e
5P 1a 2a 4a 4b 2b 4c 4d 3b 6b 3a 6a 4e 4f 4g 2c 4h
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 -1 1 1 1 -1 1 -1 1 -1 1 -1 -1 -1 1
X.3 1 -1 -1 1 1 1 -1 B -B /B -/B 1 -1 -1 -1 1
X.4 1 -1 -1 1 1 1 -1 /B -/B B -B 1 -1 -1 -1 1
X.5 1 1 1 1 1 1 1 B B /B /B 1 1 1 1 1
X.6 1 1 1 1 1 1 1 /B /B B B 1 1 1 1 1
X.7 3 -3 1 -1 3 -1 1 . . . . -1 1 1 -3 -1
X.8 3 3 -1 -1 3 -1 -1 . . . . -1 -1 -1 3 -1
X.9 3 1 A 1 -1 1 /A . . . . -/A -1 -1 -3 -A
X.10 3 1 /A 1 -1 1 A . . . . -A -1 -1 -3 -/A
X.11 3 -1 -/A 1 -1 1 -A . . . . -A 1 1 3 -/A
X.12 3 -1 -A 1 -1 1 -/A . . . . -/A 1 1 3 -A
X.13 3 -1 1 -A -1 -/A 1 . . . . 1 -A -/A 3 1
X.14 3 -1 1 -/A -1 -A 1 . . . . 1 -/A -A 3 1
X.15 3 1 -1 -A -1 -/A -1 . . . . 1 A /A -3 1
X.16 3 1 -1 -/A -1 -A -1 . . . . 1 /A A -3 1
A = 1+2*E(4)
= 1+2*Sqrt(-1) = 1+2i
B = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
|