Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $53$ | |
| Group : | $C_4\times S_4$ | |
| CHM label : | $[1/2.4^{2}]S(3)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,7)(3,9)(4,10)(6,12), (1,5)(2,10)(4,8)(7,11), (1,5,9)(2,6,10)(3,7,11)(4,8,12), (1,4,7,10)(2,5,8,11)(3,6,9,12) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 2, $C_2^2$ 6: $S_3$ 8: $C_4\times C_2$ 12: $D_{6}$ 24: $S_4$, $S_3 \times C_4$ 48: $S_4\times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 4: None
Degree 6: $D_{6}$
Low degree siblings
12T53, 16T181 x 2, 24T129, 24T130, 24T167, 24T168 x 2, 24T169 x 2, 32T387Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 3, 9)( 6,12)$ |
| $ 4, 4, 1, 1, 1, 1 $ | $6$ | $4$ | $( 2, 6, 8,12)( 3, 5, 9,11)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $6$ | $2$ | $( 2, 6)( 3,11)( 5, 9)( 8,12)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $3$ | $2$ | $( 2, 8)( 3, 9)( 5,11)( 6,12)$ |
| $ 4, 2, 2, 2, 2 $ | $6$ | $4$ | $( 1, 2)( 3, 6, 9,12)( 4, 5)( 7, 8)(10,11)$ |
| $ 4, 2, 2, 2, 2 $ | $6$ | $4$ | $( 1, 2)( 3,12, 9, 6)( 4, 5)( 7, 8)(10,11)$ |
| $ 12 $ | $8$ | $12$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12)$ |
| $ 12 $ | $8$ | $12$ | $( 1, 2, 3,10,11,12, 7, 8, 9, 4, 5, 6)$ |
| $ 4, 4, 4 $ | $6$ | $4$ | $( 1, 2, 7, 8)( 3, 6, 9,12)( 4, 5,10,11)$ |
| $ 4, 4, 4 $ | $6$ | $4$ | $( 1, 2, 7, 8)( 3,12, 9, 6)( 4, 5,10,11)$ |
| $ 6, 6 $ | $8$ | $6$ | $( 1, 3, 5, 7, 9,11)( 2, 4, 6, 8,10,12)$ |
| $ 3, 3, 3, 3 $ | $8$ | $3$ | $( 1, 3,11)( 2, 4, 6)( 5, 7, 9)( 8,10,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 3)( 2, 8)( 4, 6)( 5,11)( 7, 9)(10,12)$ |
| $ 4, 4, 2, 2 $ | $6$ | $4$ | $( 1, 3, 7, 9)( 2, 8)( 4, 6,10,12)( 5,11)$ |
| $ 4, 4, 4 $ | $1$ | $4$ | $( 1, 4, 7,10)( 2, 5, 8,11)( 3, 6, 9,12)$ |
| $ 4, 4, 4 $ | $3$ | $4$ | $( 1, 4, 7,10)( 2, 5, 8,11)( 3,12, 9, 6)$ |
| $ 4, 4, 4 $ | $3$ | $4$ | $( 1, 4, 7,10)( 2,11, 8, 5)( 3,12, 9, 6)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 7)( 2, 8)( 3, 9)( 4,10)( 5,11)( 6,12)$ |
| $ 4, 4, 4 $ | $1$ | $4$ | $( 1,10, 7, 4)( 2,11, 8, 5)( 3,12, 9, 6)$ |
Group invariants
| Order: | $96=2^{5} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [96, 186] |
| Character table: |
2 5 5 4 4 5 4 4 2 2 4 4 2 2 4 4 5 5 5 5 5
3 1 . . . . . . 1 1 . . 1 1 . . 1 . . 1 1
1a 2a 4a 2b 2c 4b 4c 12a 12b 4d 4e 6a 3a 2d 4f 4g 4h 4i 2e 4j
2P 1a 1a 2c 1a 1a 2a 2a 6a 6a 2e 2e 3a 3a 1a 2c 2e 2e 2e 1a 2e
3P 1a 2a 4a 2b 2c 4c 4b 4g 4j 4e 4d 2e 1a 2d 4f 4j 4i 4h 2e 4g
5P 1a 2a 4a 2b 2c 4b 4c 12a 12b 4d 4e 6a 3a 2d 4f 4g 4h 4i 2e 4j
7P 1a 2a 4a 2b 2c 4c 4b 12b 12a 4e 4d 6a 3a 2d 4f 4j 4i 4h 2e 4g
11P 1a 2a 4a 2b 2c 4c 4b 12b 12a 4e 4d 6a 3a 2d 4f 4j 4i 4h 2e 4g
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 -1 -1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 1 1 1
X.3 1 1 -1 -1 1 1 1 -1 -1 1 1 1 1 -1 -1 -1 -1 -1 1 -1
X.4 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 1 -1
X.5 1 -1 -1 1 1 A -A A -A -A A -1 1 -1 1 -A A -A -1 A
X.6 1 -1 -1 1 1 -A A -A A A -A -1 1 -1 1 A -A A -1 -A
X.7 1 -1 1 -1 1 A -A -A A -A A -1 1 1 -1 A -A A -1 -A
X.8 1 -1 1 -1 1 -A A A -A A -A -1 1 1 -1 -A A -A -1 A
X.9 2 2 . . 2 . . -1 -1 . . -1 -1 . . 2 2 2 2 2
X.10 2 2 . . 2 . . 1 1 . . -1 -1 . . -2 -2 -2 2 -2
X.11 2 -2 . . 2 . . A -A . . 1 -1 . . B -B B -2 -B
X.12 2 -2 . . 2 . . -A A . . 1 -1 . . -B B -B -2 B
X.13 3 -1 -1 1 -1 -1 -1 . . 1 1 . . 1 -1 3 -1 -1 3 3
X.14 3 -1 -1 1 -1 1 1 . . -1 -1 . . 1 -1 -3 1 1 3 -3
X.15 3 -1 1 -1 -1 -1 -1 . . 1 1 . . -1 1 -3 1 1 3 -3
X.16 3 -1 1 -1 -1 1 1 . . -1 -1 . . -1 1 3 -1 -1 3 3
X.17 3 1 -1 -1 -1 A -A . . A -A . . 1 1 C -A A -3 -C
X.18 3 1 -1 -1 -1 -A A . . -A A . . 1 1 -C A -A -3 C
X.19 3 1 1 1 -1 A -A . . A -A . . -1 -1 -C A -A -3 C
X.20 3 1 1 1 -1 -A A . . -A A . . -1 -1 C -A A -3 -C
A = -E(4)
= -Sqrt(-1) = -i
B = -2*E(4)
= -2*Sqrt(-1) = -2i
C = 3*E(4)
= 3*Sqrt(-1) = 3i
|