Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $52$ | |
| Group : | $\GL(2,Z/4)$ | |
| CHM label : | $1/2c[1/16.D(4)^{3}]S(3)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (3,9)(6,12), (1,10)(2,5)(3,12)(4,7)(6,9)(8,11), (1,11)(2,10)(3,9)(4,8)(5,7), (1,5,9)(2,6,10)(3,7,11)(4,8,12) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 6: $S_3$ 8: $D_{4}$ 12: $D_{6}$ 24: $S_4$, $(C_6\times C_2):C_2$ 48: $S_4\times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 4: None
Degree 6: $D_{6}$
Low degree siblings
12T49 x 2, 12T50, 16T186, 16T193, 24T153, 24T154, 24T155 x 2, 24T156, 24T157, 24T158, 24T159, 24T165, 24T166, 32T392Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 3, 9)( 6,12)$ |
| $ 2, 2, 2, 2, 2, 1, 1 $ | $12$ | $2$ | $( 2, 6)( 3, 5)( 4,10)( 8,12)( 9,11)$ |
| $ 4, 4, 2, 1, 1 $ | $12$ | $4$ | $( 2, 6, 8,12)( 3,11, 9, 5)( 4,10)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $3$ | $2$ | $( 2, 8)( 3, 9)( 5,11)( 6,12)$ |
| $ 4, 2, 2, 2, 2 $ | $12$ | $4$ | $( 1, 2)( 3, 6, 9,12)( 4, 5)( 7, 8)(10,11)$ |
| $ 6, 6 $ | $8$ | $6$ | $( 1, 2, 3, 4,11, 6)( 5,12, 7, 8, 9,10)$ |
| $ 6, 6 $ | $8$ | $6$ | $( 1, 2, 3,10, 5,12)( 4,11, 6, 7, 8, 9)$ |
| $ 4, 4, 4 $ | $12$ | $4$ | $( 1, 2, 7, 8)( 3, 6, 9,12)( 4, 5,10,11)$ |
| $ 6, 6 $ | $8$ | $6$ | $( 1, 3, 5, 7, 9,11)( 2, 4, 6, 8,10,12)$ |
| $ 3, 3, 3, 3 $ | $8$ | $3$ | $( 1, 3,11)( 2, 4, 6)( 5, 7, 9)( 8,10,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 4)( 2, 5)( 3, 6)( 7,10)( 8,11)( 9,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 4)( 2,11)( 3, 6)( 5, 8)( 7,10)( 9,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 7)( 2, 8)( 3, 9)( 4,10)( 5,11)( 6,12)$ |
Group invariants
| Order: | $96=2^{5} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [96, 195] |
| Character table: |
2 5 5 3 3 5 3 2 2 3 2 2 4 4 5
3 1 . . . . . 1 1 . 1 1 . 1 1
1a 2a 2b 4a 2c 4b 6a 6b 4c 6c 3a 2d 2e 2f
2P 1a 1a 1a 2c 1a 2a 3a 3a 2f 3a 3a 1a 1a 1a
3P 1a 2a 2b 4a 2c 4b 2e 2e 4c 2f 1a 2d 2e 2f
5P 1a 2a 2b 4a 2c 4b 6b 6a 4c 6c 3a 2d 2e 2f
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 -1 -1 1 -1 1 1 -1 1 1 1 1 1
X.3 1 1 -1 -1 1 1 -1 -1 1 1 1 -1 -1 1
X.4 1 1 1 1 1 -1 -1 -1 -1 1 1 -1 -1 1
X.5 2 2 . . 2 . 1 1 . -1 -1 -2 -2 2
X.6 2 2 . . 2 . -1 -1 . -1 -1 2 2 2
X.7 2 -2 . . 2 . . . . -2 2 . . -2
X.8 2 -2 . . 2 . A -A . 1 -1 . . -2
X.9 2 -2 . . 2 . -A A . 1 -1 . . -2
X.10 3 -1 -1 1 -1 -1 . . 1 . . 1 -3 3
X.11 3 -1 -1 1 -1 1 . . -1 . . -1 3 3
X.12 3 -1 1 -1 -1 -1 . . 1 . . -1 3 3
X.13 3 -1 1 -1 -1 1 . . -1 . . 1 -3 3
X.14 6 2 . . -2 . . . . . . . . -6
A = -E(3)+E(3)^2
= -Sqrt(-3) = -i3
|