Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $49$ | |
| Group : | $\GL(2,Z/4)$ | |
| CHM label : | $[2]2S_{4}(6)_{2}$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2,9,7)(3,11,5,12)(4,8,10,6), (1,9)(2,7)(3,5)(4,10)(6,8)(11,12), (1,2)(3,5)(4,6)(7,9)(8,10), (1,3,6,12)(2,4,7,10)(5,8,11,9) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 6: $S_3$ 8: $D_{4}$ 12: $D_{6}$ 24: $S_4$, $(C_6\times C_2):C_2$ 48: $S_4\times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$
Degree 4: None
Degree 6: $S_4\times C_2$
Low degree siblings
12T49, 12T50, 12T52, 16T186, 16T193, 24T153, 24T154, 24T155 x 2, 24T156, 24T157, 24T158, 24T159, 24T165, 24T166, 32T392Siblings are shown with degree $\leq 47$
A number field with this Galois group has exactly one arithmetically equivalent field.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 4, 4, 2, 1, 1 $ | $12$ | $4$ | $( 2, 3,10,12)( 4,11, 7, 5)( 6, 8)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $6$ | $2$ | $( 2, 4)( 3, 5)( 7,10)(11,12)$ |
| $ 2, 2, 2, 2, 2, 1, 1 $ | $12$ | $2$ | $( 2, 5)( 3, 7)( 4,12)( 6, 8)(10,11)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $3$ | $2$ | $( 2,10)( 3,12)( 4, 7)( 5,11)$ |
| $ 6, 6 $ | $8$ | $6$ | $( 1, 2, 3, 9, 7, 5)( 4,12, 6,10,11, 8)$ |
| $ 6, 6 $ | $8$ | $6$ | $( 1, 2, 5, 6,10,12)( 3, 8, 4,11, 9, 7)$ |
| $ 4, 4, 4 $ | $12$ | $4$ | $( 1, 2, 8,10)( 3,12, 5,11)( 4, 9, 7, 6)$ |
| $ 4, 4, 4 $ | $12$ | $4$ | $( 1, 2, 9, 7)( 3,11, 5,12)( 4, 8,10, 6)$ |
| $ 3, 3, 3, 3 $ | $8$ | $3$ | $( 1, 2,11)( 3, 6,10)( 4, 5, 8)( 7,12, 9)$ |
| $ 6, 6 $ | $8$ | $6$ | $( 1, 2,12, 8, 4, 3)( 5, 9, 7,11, 6,10)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $3$ | $2$ | $( 1, 6)( 2, 7)( 3,12)( 4,10)( 5,11)( 8, 9)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 6)( 2,10)( 3,11)( 4, 7)( 5,12)( 8, 9)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 9)( 2, 7)( 3, 5)( 4,10)( 6, 8)(11,12)$ |
Group invariants
| Order: | $96=2^{5} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [96, 195] |
| Character table: |
2 5 3 4 3 5 2 2 3 3 2 2 5 4 5
3 1 . . . . 1 1 . . 1 1 . 1 1
1a 4a 2a 2b 2c 6a 6b 4b 4c 3a 6c 2d 2e 2f
2P 1a 2c 1a 1a 1a 3a 3a 2d 2f 3a 3a 1a 1a 1a
3P 1a 4a 2a 2b 2c 2f 2e 4b 4c 1a 2e 2d 2e 2f
5P 1a 4a 2a 2b 2c 6a 6c 4b 4c 3a 6b 2d 2e 2f
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 -1 1 1 1 -1 1 -1 1 -1 1 -1 1
X.3 1 -1 1 -1 1 1 1 -1 -1 1 1 1 1 1
X.4 1 1 -1 -1 1 1 -1 -1 1 1 -1 1 -1 1
X.5 2 . -2 . 2 -1 1 . . -1 1 2 -2 2
X.6 2 . 2 . 2 -1 -1 . . -1 -1 2 2 2
X.7 2 . . . -2 -2 . . . 2 . 2 . -2
X.8 2 . . . -2 1 A . . -1 -A 2 . -2
X.9 2 . . . -2 1 -A . . -1 A 2 . -2
X.10 3 -1 -1 1 -1 . . -1 1 . . -1 3 3
X.11 3 -1 1 -1 -1 . . 1 1 . . -1 -3 3
X.12 3 1 -1 -1 -1 . . 1 -1 . . -1 3 3
X.13 3 1 1 1 -1 . . -1 -1 . . -1 -3 3
X.14 6 . . . 2 . . . . . . -2 . -6
A = -E(3)+E(3)^2
= -Sqrt(-3) = -i3
|