Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $47$ | |
| Group : | $PSU(3,2)$ | |
| CHM label : | $[(1/3.3^{3}):2]E(4)_{4}$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2,5,10)(3,12)(4,11,8,7)(6,9), (1,5)(2,10)(4,8)(7,11), (1,4,5,8)(2,7,10,11)(3,6)(9,12), (2,6,10)(3,7,11)(4,8,12) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 8: $Q_8$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 3: None
Degree 4: $C_2^2$
Degree 6: None
Low degree siblings
9T14, 18T35 x 3, 24T82, 36T55Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $9$ | $2$ | $( 3,11)( 4, 8)( 5, 9)( 6,10)$ |
| $ 3, 3, 3, 1, 1, 1 $ | $8$ | $3$ | $( 2, 6,10)( 3, 7,11)( 4, 8,12)$ |
| $ 4, 4, 2, 2 $ | $18$ | $4$ | $( 1, 2)( 3, 4,11, 8)( 5, 6, 9,10)( 7,12)$ |
| $ 4, 4, 2, 2 $ | $18$ | $4$ | $( 1, 3)( 2, 4, 6,12)( 5,11, 9, 7)( 8,10)$ |
| $ 4, 4, 2, 2 $ | $18$ | $4$ | $( 1, 4, 9, 8)( 2, 3, 6, 7)( 5,12)(10,11)$ |
Group invariants
| Order: | $72=2^{3} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [72, 41] |
| Character table: |
2 3 3 . 2 2 2
3 2 . 2 . . .
1a 2a 3a 4a 4b 4c
2P 1a 1a 3a 2a 2a 2a
3P 1a 2a 1a 4a 4b 4c
X.1 1 1 1 1 1 1
X.2 1 1 1 -1 -1 1
X.3 1 1 1 -1 1 -1
X.4 1 1 1 1 -1 -1
X.5 2 -2 2 . . .
X.6 8 . -1 . . .
|