Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $46$ | |
| Group : | $F_9$ | |
| CHM label : | $[(1/3.3^{3}):2]4_{4}$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,5)(2,10)(4,8)(7,11), (1,4,2,11,5,8,10,7)(3,9,12,6), (2,6,10)(3,7,11)(4,8,12) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 4: $C_4$ 8: $C_8$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 4: $C_4$
Degree 6: None
Low degree siblings
9T15, 18T28, 24T81, 36T49Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $9$ | $2$ | $( 3,11)( 4, 8)( 5, 9)( 6,10)$ |
| $ 3, 3, 3, 1, 1, 1 $ | $8$ | $3$ | $( 2, 6,10)( 3, 7,11)( 4, 8,12)$ |
| $ 4, 4, 2, 2 $ | $9$ | $4$ | $( 1, 2)( 3, 4,11, 8)( 5, 6, 9,10)( 7,12)$ |
| $ 4, 4, 2, 2 $ | $9$ | $4$ | $( 1, 2)( 3, 8,11, 4)( 5,10, 9, 6)( 7,12)$ |
| $ 8, 4 $ | $9$ | $8$ | $( 1, 3, 6, 8, 9, 7, 2, 4)( 5,11,10,12)$ |
| $ 8, 4 $ | $9$ | $8$ | $( 1, 3,10, 8)( 2, 4, 9,11, 6,12, 5, 7)$ |
| $ 8, 4 $ | $9$ | $8$ | $( 1, 4,10,11, 9,12, 2, 3)( 5, 8, 6, 7)$ |
| $ 8, 4 $ | $9$ | $8$ | $( 1, 4, 6,11)( 2, 3, 9, 8,10, 7, 5,12)$ |
Group invariants
| Order: | $72=2^{3} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [72, 39] |
| Character table: |
2 3 3 . 3 3 3 3 3 3
3 2 . 2 . . . . . .
1a 2a 3a 4a 4b 8a 8b 8c 8d
2P 1a 1a 3a 2a 2a 4a 4a 4b 4b
3P 1a 2a 1a 4b 4a 8c 8d 8a 8b
5P 1a 2a 3a 4a 4b 8b 8a 8d 8c
7P 1a 2a 3a 4b 4a 8d 8c 8b 8a
X.1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 -1 -1 -1 -1
X.3 1 -1 1 A -A B -B -/B /B
X.4 1 -1 1 A -A -B B /B -/B
X.5 1 -1 1 -A A -/B /B B -B
X.6 1 -1 1 -A A /B -/B -B B
X.7 1 1 1 -1 -1 A A -A -A
X.8 1 1 1 -1 -1 -A -A A A
X.9 8 . -1 . . . . . .
A = -E(4)
= -Sqrt(-1) = -i
B = -E(8)^3
|