Show commands: Magma
Group invariants
| Abstract group: | $C_3\times S_4$ |
| |
| Order: | $72=2^{3} \cdot 3^{2}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $12$ |
| |
| Transitive number $t$: | $45$ |
| |
| CHM label: | $S(4)[x]C(3)$ | ||
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $3$ |
| |
| Generators: | $(1,10)(2,5)(6,9)$, $(1,5,9)(2,6,10)(3,7,11)(4,8,12)$, $(1,4,7,10)(2,5,8,11)(3,6,9,12)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $6$: $S_3$, $C_6$ $18$: $S_3\times C_3$ $24$: $S_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $C_3$
Degree 4: $S_4$
Degree 6: None
Low degree siblings
18T30, 18T33, 24T80, 24T84, 36T20, 36T52Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{12}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{6}$ | $3$ | $2$ | $6$ | $( 1, 4)( 2,11)( 3, 6)( 5, 8)( 7,10)( 9,12)$ |
| 2B | $2^{3},1^{6}$ | $6$ | $2$ | $3$ | $( 3,12)( 4, 7)( 8,11)$ |
| 3A1 | $3^{4}$ | $1$ | $3$ | $8$ | $( 1, 9, 5)( 2,10, 6)( 3,11, 7)( 4,12, 8)$ |
| 3A-1 | $3^{4}$ | $1$ | $3$ | $8$ | $( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12)$ |
| 3B | $3^{3},1^{3}$ | $8$ | $3$ | $6$ | $( 1, 7, 4)( 3,12, 9)( 5,11, 8)$ |
| 3C1 | $3^{4}$ | $8$ | $3$ | $8$ | $( 1,11,12)( 2, 6,10)( 3, 4, 5)( 7, 8, 9)$ |
| 3C-1 | $3^{4}$ | $8$ | $3$ | $8$ | $( 1, 3, 8)( 2,10, 6)( 4, 9,11)( 5, 7,12)$ |
| 4A | $4^{3}$ | $6$ | $4$ | $9$ | $( 1,10, 4, 7)( 2, 8,11, 5)( 3, 9, 6,12)$ |
| 6A1 | $6^{2}$ | $3$ | $6$ | $10$ | $( 1,12, 5, 4, 9, 8)( 2, 7, 6,11,10, 3)$ |
| 6A-1 | $6^{2}$ | $3$ | $6$ | $10$ | $( 1, 8, 9, 4, 5,12)( 2, 3,10,11, 6, 7)$ |
| 6B1 | $6,3^{2}$ | $6$ | $6$ | $9$ | $( 1, 5, 9)( 2, 6,10)( 3, 4,11,12, 7, 8)$ |
| 6B-1 | $6,3^{2}$ | $6$ | $6$ | $9$ | $( 1, 9, 5)( 2,10, 6)( 3, 8, 7,12,11, 4)$ |
| 12A1 | $12$ | $6$ | $12$ | $11$ | $( 1,11,12,10, 5, 3, 4, 2, 9, 7, 8, 6)$ |
| 12A-1 | $12$ | $6$ | $12$ | $11$ | $( 1, 3, 8,10, 9,11, 4, 6, 5, 7,12, 2)$ |
Malle's constant $a(G)$: $1/3$
Character table
| 1A | 2A | 2B | 3A1 | 3A-1 | 3B | 3C1 | 3C-1 | 4A | 6A1 | 6A-1 | 6B1 | 6B-1 | 12A1 | 12A-1 | ||
| Size | 1 | 3 | 6 | 1 | 1 | 8 | 8 | 8 | 6 | 3 | 3 | 6 | 6 | 6 | 6 | |
| 2 P | 1A | 1A | 1A | 3A-1 | 3A1 | 3B | 3C-1 | 3C1 | 2A | 3A-1 | 3A1 | 3A1 | 3A-1 | 6A1 | 6A-1 | |
| 3 P | 1A | 2A | 2B | 1A | 1A | 1A | 1A | 1A | 4A | 2A | 2A | 2B | 2B | 4A | 4A | |
| Type | ||||||||||||||||
| 72.42.1a | R | |||||||||||||||
| 72.42.1b | R | |||||||||||||||
| 72.42.1c1 | C | |||||||||||||||
| 72.42.1c2 | C | |||||||||||||||
| 72.42.1d1 | C | |||||||||||||||
| 72.42.1d2 | C | |||||||||||||||
| 72.42.2a | R | |||||||||||||||
| 72.42.2b1 | C | |||||||||||||||
| 72.42.2b2 | C | |||||||||||||||
| 72.42.3a | R | |||||||||||||||
| 72.42.3b | R | |||||||||||||||
| 72.42.3c1 | C | |||||||||||||||
| 72.42.3c2 | C | |||||||||||||||
| 72.42.3d1 | C | |||||||||||||||
| 72.42.3d2 | C |
Regular extensions
Data not computed