Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $45$ | |
| Group : | $C_3\times S_4$ | |
| CHM label : | $S(4)[x]C(3)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,10)(2,5)(6,9), (1,5,9)(2,6,10)(3,7,11)(4,8,12), (1,4,7,10)(2,5,8,11)(3,6,9,12) | |
| $|\Aut(F/K)|$: | $3$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 6: $S_3$, $C_6$ 18: $S_3\times C_3$ 24: $S_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $C_3$
Degree 4: $S_4$
Degree 6: None
Low degree siblings
18T30, 18T33, 24T80, 24T84, 36T20, 36T52Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $6$ | $2$ | $( 3,12)( 4, 7)( 8,11)$ |
| $ 3, 3, 3, 1, 1, 1 $ | $8$ | $3$ | $( 2, 8,11)( 3, 6,12)( 4, 7,10)$ |
| $ 3, 3, 3, 3 $ | $8$ | $3$ | $( 1, 2, 3)( 4, 8,12)( 5, 6, 7)( 9,10,11)$ |
| $ 12 $ | $6$ | $12$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12)$ |
| $ 6, 6 $ | $3$ | $6$ | $( 1, 2, 9,10, 5, 6)( 3, 4,11,12, 7, 8)$ |
| $ 6, 3, 3 $ | $6$ | $6$ | $( 1, 2, 9,10, 5, 6)( 3, 7,11)( 4, 8,12)$ |
| $ 3, 3, 3, 3 $ | $8$ | $3$ | $( 1, 3, 2)( 4,12, 8)( 5, 7, 6)( 9,11,10)$ |
| $ 12 $ | $6$ | $12$ | $( 1, 3, 8,10, 9,11, 4, 6, 5, 7,12, 2)$ |
| $ 6, 6 $ | $3$ | $6$ | $( 1, 3, 5, 7, 9,11)( 2, 4, 6, 8,10,12)$ |
| $ 6, 3, 3 $ | $6$ | $6$ | $( 1, 3, 5, 7, 9,11)( 2,10, 6)( 4,12, 8)$ |
| $ 4, 4, 4 $ | $6$ | $4$ | $( 1, 4, 7,10)( 2, 5, 8,11)( 3, 6, 9,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $3$ | $2$ | $( 1, 4)( 2,11)( 3, 6)( 5, 8)( 7,10)( 9,12)$ |
| $ 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12)$ |
| $ 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 9, 5)( 2,10, 6)( 3,11, 7)( 4,12, 8)$ |
Group invariants
| Order: | $72=2^{3} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [72, 42] |
| Character table: |
2 3 2 . . 2 3 2 . 2 3 2 2 3 3 3
3 2 1 2 2 1 1 1 2 1 1 1 1 1 2 2
1a 2a 3a 3b 12a 6a 6b 3c 12b 6c 6d 4a 2b 3d 3e
2P 1a 1a 3a 3c 6c 3e 3e 3b 6a 3d 3d 2b 1a 3e 3d
3P 1a 2a 1a 1a 4a 2b 2a 1a 4a 2b 2a 4a 2b 1a 1a
5P 1a 2a 3a 3c 12b 6c 6d 3b 12a 6a 6b 4a 2b 3e 3d
7P 1a 2a 3a 3b 12a 6a 6b 3c 12b 6c 6d 4a 2b 3d 3e
11P 1a 2a 3a 3c 12b 6c 6d 3b 12a 6a 6b 4a 2b 3e 3d
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 1 -1 1 -1 1 -1 1 -1 -1 1 1 1
X.3 1 -1 1 A -A A -A /A -/A /A -/A -1 1 A /A
X.4 1 -1 1 /A -/A /A -/A A -A A -A -1 1 /A A
X.5 1 1 1 A A A A /A /A /A /A 1 1 A /A
X.6 1 1 1 /A /A /A /A A A A A 1 1 /A A
X.7 2 . -1 -1 . 2 . -1 . 2 . . 2 2 2
X.8 2 . -1 -A . B . -/A . /B . . 2 B /B
X.9 2 . -1 -/A . /B . -A . B . . 2 /B B
X.10 3 -1 . . 1 -1 -1 . 1 -1 -1 1 -1 3 3
X.11 3 1 . . -1 -1 1 . -1 -1 1 -1 -1 3 3
X.12 3 -1 . . A -A -A . /A -/A -/A 1 -1 C /C
X.13 3 -1 . . /A -/A -/A . A -A -A 1 -1 /C C
X.14 3 1 . . -/A -/A /A . -A -A A -1 -1 /C C
X.15 3 1 . . -A -A A . -/A -/A /A -1 -1 C /C
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
B = 2*E(3)^2
= -1-Sqrt(-3) = -1-i3
C = 3*E(3)^2
= (-3-3*Sqrt(-3))/2 = -3-3b3
|