Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $42$ | |
| Group : | $C_3\times C_3:D_4$ | |
| CHM label : | $[3^{2}]D(4)=6wr2$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,7)(3,9)(5,11), (2,6,10)(4,8,12), (1,4,7,10)(2,5,8,11)(3,6,9,12) | |
| $|\Aut(F/K)|$: | $6$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 3: $C_3$ 4: $C_2^2$ 6: $S_3$, $C_6$ x 3 8: $D_{4}$ 12: $D_{6}$, $C_6\times C_2$ 18: $S_3\times C_3$ 24: $(C_6\times C_2):C_2$, $D_4 \times C_3$ 36: $C_6\times S_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 4: $D_{4}$
Degree 6: $S_3\times C_3$
Low degree siblings
12T42, 24T77, 36T19, 36T26Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 6, 1, 1, 1, 1, 1, 1 $ | $2$ | $6$ | $( 2, 4, 6, 8,10,12)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1 $ | $2$ | $3$ | $( 2, 6,10)( 4, 8,12)$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 2, 8)( 4,10)( 6,12)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1 $ | $2$ | $3$ | $( 2,10, 6)( 4,12, 8)$ |
| $ 6, 1, 1, 1, 1, 1, 1 $ | $2$ | $6$ | $( 2,12,10, 8, 6, 4)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)$ |
| $ 12 $ | $6$ | $12$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12)$ |
| $ 6, 6 $ | $6$ | $6$ | $( 1, 2, 5, 6, 9,10)( 3, 4, 7, 8,11,12)$ |
| $ 4, 4, 4 $ | $6$ | $4$ | $( 1, 2, 7, 8)( 3, 4, 9,10)( 5, 6,11,12)$ |
| $ 6, 6 $ | $6$ | $6$ | $( 1, 2, 9,10, 5, 6)( 3, 4,11,12, 7, 8)$ |
| $ 12 $ | $6$ | $12$ | $( 1, 2,11,12, 9,10, 7, 8, 5, 6, 3, 4)$ |
| $ 6, 6 $ | $1$ | $6$ | $( 1, 3, 5, 7, 9,11)( 2, 4, 6, 8,10,12)$ |
| $ 6, 3, 3 $ | $2$ | $6$ | $( 1, 3, 5, 7, 9,11)( 2, 6,10)( 4, 8,12)$ |
| $ 6, 2, 2, 2 $ | $2$ | $6$ | $( 1, 3, 5, 7, 9,11)( 2, 8)( 4,10)( 6,12)$ |
| $ 6, 3, 3 $ | $2$ | $6$ | $( 1, 3, 5, 7, 9,11)( 2,10, 6)( 4,12, 8)$ |
| $ 6, 6 $ | $2$ | $6$ | $( 1, 3, 5, 7, 9,11)( 2,12,10, 8, 6, 4)$ |
| $ 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12)$ |
| $ 3, 3, 2, 2, 2 $ | $2$ | $6$ | $( 1, 5, 9)( 2, 8)( 3, 7,11)( 4,10)( 6,12)$ |
| $ 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 5, 9)( 2,10, 6)( 3, 7,11)( 4,12, 8)$ |
| $ 6, 3, 3 $ | $2$ | $6$ | $( 1, 5, 9)( 2,12,10, 8, 6, 4)( 3, 7,11)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 7)( 2, 8)( 3, 9)( 4,10)( 5,11)( 6,12)$ |
| $ 3, 3, 2, 2, 2 $ | $2$ | $6$ | $( 1, 7)( 2,10, 6)( 3, 9)( 4,12, 8)( 5,11)$ |
| $ 6, 2, 2, 2 $ | $2$ | $6$ | $( 1, 7)( 2,12,10, 8, 6, 4)( 3, 9)( 5,11)$ |
| $ 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 9, 5)( 2,10, 6)( 3,11, 7)( 4,12, 8)$ |
| $ 6, 3, 3 $ | $2$ | $6$ | $( 1, 9, 5)( 2,12,10, 8, 6, 4)( 3,11, 7)$ |
| $ 6, 6 $ | $1$ | $6$ | $( 1,11, 9, 7, 5, 3)( 2,12,10, 8, 6, 4)$ |
Group invariants
| Order: | $72=2^{3} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [72, 30] |
| Character table: Data not available. |