Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $34$ | |
| Group : | $S_3\wr C_2$ | |
| CHM label : | $F_{36}:2(12e)$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,8)(2,3)(4,5)(6,7)(9,12)(10,11), (1,3,5,7,9,11)(2,4,6,8,10,12) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 8: $D_{4}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 3: None
Degree 4: $C_2^2$
Degree 6: $C_3^2:D_4$
Low degree siblings
6T13 x 2, 9T16, 12T34, 12T35 x 2, 12T36 x 2, 18T34 x 2, 18T36, 24T72 x 2, 36T53, 36T54 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $9$ | $2$ | $( 4, 8)( 5, 9)( 6,10)( 7,11)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1 $ | $4$ | $3$ | $( 2, 6,10)( 3, 7,11)$ |
| $ 4, 4, 2, 2 $ | $18$ | $4$ | $( 1, 2)( 3,12)( 4, 7, 8,11)( 5, 6, 9,10)$ |
| $ 6, 6 $ | $12$ | $6$ | $( 1, 3, 5, 7, 9,11)( 2, 4, 6, 8,10,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 3)( 2,12)( 4, 6)( 5, 7)( 8,10)( 9,11)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 4)( 2, 3)( 5,12)( 6, 7)( 8, 9)(10,11)$ |
| $ 6, 2, 2, 2 $ | $12$ | $6$ | $( 1, 4, 9,12, 5, 8)( 2, 3)( 6,11)( 7,10)$ |
| $ 3, 3, 3, 3 $ | $4$ | $3$ | $( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12)$ |
Group invariants
| Order: | $72=2^{3} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [72, 40] |
| Character table: |
2 3 3 1 2 1 2 2 1 1
3 2 . 2 . 1 1 1 1 2
1a 2a 3a 4a 6a 2b 2c 6b 3b
2P 1a 1a 3a 2a 3b 1a 1a 3a 3b
3P 1a 2a 1a 4a 2b 2b 2c 2c 1a
5P 1a 2a 3a 4a 6a 2b 2c 6b 3b
X.1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 -1 -1 -1 1 1 1
X.3 1 1 1 -1 1 1 -1 -1 1
X.4 1 1 1 1 -1 -1 -1 -1 1
X.5 2 -2 2 . . . . . 2
X.6 4 . -2 . -1 2 . . 1
X.7 4 . -2 . 1 -2 . . 1
X.8 4 . 1 . . . -2 1 -2
X.9 4 . 1 . . . 2 -1 -2
|