Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $31$ | |
| Group : | $C_4^2:C_3$ | |
| CHM label : | $[4^{2}]3$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,10,7,4)(3,6,9,12), (1,5,9)(2,6,10)(3,7,11)(4,8,12) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 3: $C_3$ 12: $A_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $C_3$
Degree 4: None
Degree 6: $A_4$
Low degree siblings
12T31, 16T63, 24T58Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 4, 4, 1, 1, 1, 1 $ | $3$ | $4$ | $( 2, 5, 8,11)( 3,12, 9, 6)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $3$ | $2$ | $( 2, 8)( 3, 9)( 5,11)( 6,12)$ |
| $ 4, 4, 1, 1, 1, 1 $ | $3$ | $4$ | $( 2,11, 8, 5)( 3, 6, 9,12)$ |
| $ 3, 3, 3, 3 $ | $16$ | $3$ | $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,11,12)$ |
| $ 3, 3, 3, 3 $ | $16$ | $3$ | $( 1, 3, 2)( 4, 6, 5)( 7, 9, 8)(10,12,11)$ |
| $ 4, 4, 2, 2 $ | $3$ | $4$ | $( 1, 4, 7,10)( 2, 5, 8,11)( 3, 9)( 6,12)$ |
| $ 4, 4, 2, 2 $ | $3$ | $4$ | $( 1, 7)( 2,11, 8, 5)( 3,12, 9, 6)( 4,10)$ |
Group invariants
| Order: | $48=2^{4} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [48, 3] |
| Character table: |
2 4 4 4 4 . . 4 4
3 1 . . . 1 1 . .
1a 4a 2a 4b 3a 3b 4c 4d
2P 1a 2a 1a 2a 3b 3a 2a 2a
3P 1a 4b 2a 4a 1a 1a 4d 4c
X.1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 B /B 1 1
X.3 1 1 1 1 /B B 1 1
X.4 3 -1 3 -1 . . -1 -1
X.5 3 A -1 /A . . 1 1
X.6 3 /A -1 A . . 1 1
X.7 3 1 -1 1 . . /A A
X.8 3 1 -1 1 . . A /A
A = -1+2*E(4)
= -1+2*Sqrt(-1) = -1+2i
B = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
|