Properties

Label 12T299
Order \(1036800\)
n \(12\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No
Group: $S_6\wr C_2$

Related objects

Learn more about

Group action invariants

Degree $n$ :  $12$
Transitive number $t$ :  $299$
Group :  $S_6\wr C_2$
CHM label :  $[S(6)^{2}]2=S(6)wr2$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (2,4,6,8,10,12), (2,12), (1,12)(2,3)(4,5)(6,7)(8,9)(10,11)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
8:  $D_{4}$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 3: None

Degree 4: None

Degree 6: None

Low degree siblings

12T299, 20T973, 24T21434 x 2, 24T21435 x 2, 24T21436 x 2, 30T2029 x 2, 36T36499 x 2, 40T148363 x 2, 40T148364, 40T148365 x 2, 40T148366, 40T148367

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 77 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $1036800=2^{9} \cdot 3^{4} \cdot 5^{2}$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.