Show commands:
Magma
magma: G := TransitiveGroup(12, 295);
Group action invariants
Degree $n$: | $12$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $295$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $M_{12}$ | ||
CHM label: | $M(12)$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | yes | magma: IsPrimitive(G);
| |
Nilpotency class: | $-1$ (not nilpotent) | magma: NilpotencyClass(G);
| |
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,9,5,12,11,8,2,4)(6,10), (1,11,2,3,4)(5,8,12,6,7) | magma: Generators(G);
|
Low degree resolvents
noneResolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: None
Degree 4: None
Degree 6: None
Low degree siblings
12T295Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 2, 2, 2, 2, 2, 2 $ | $396$ | $2$ | $( 1, 4)( 2, 9)( 3, 7)( 5, 8)( 6,10)(11,12)$ |
$ 5, 5, 1, 1 $ | $9504$ | $5$ | $( 1, 3, 9, 8, 6)( 2, 5,10, 4, 7)$ |
$ 10, 2 $ | $9504$ | $10$ | $( 1, 5, 3,10, 9, 4, 8, 7, 6, 2)(11,12)$ |
$ 2, 2, 2, 2, 1, 1, 1, 1 $ | $495$ | $2$ | $( 1, 9)( 2,12)( 3, 5)( 6,11)$ |
$ 3, 3, 3, 1, 1, 1 $ | $1760$ | $3$ | $( 1,11, 5)( 3, 9, 6)( 7, 8,10)$ |
$ 6, 3, 2, 1 $ | $15840$ | $6$ | $( 1, 3,11, 9, 5, 6)( 2,12)( 7,10, 8)$ |
$ 4, 4, 1, 1, 1, 1 $ | $2970$ | $4$ | $( 1,11, 4,10)( 3,12, 5, 7)$ |
$ 8, 2, 1, 1 $ | $11880$ | $8$ | $( 1, 3,11,12, 4, 5,10, 7)( 6, 9)$ |
$ 4, 4, 2, 2 $ | $2970$ | $4$ | $( 1, 6, 9, 4)( 2, 8)( 3, 7)( 5,11,12,10)$ |
$ 3, 3, 3, 3 $ | $2640$ | $3$ | $( 1, 6, 8)( 2, 4,12)( 3,10,11)( 5, 9, 7)$ |
$ 6, 6 $ | $7920$ | $6$ | $( 1, 3, 8,11, 6,10)( 2, 5,12, 7, 4, 9)$ |
$ 8, 4 $ | $11880$ | $8$ | $( 1, 4, 5, 6, 7,12, 3, 8)( 2, 9,11,10)$ |
$ 11, 1 $ | $8640$ | $11$ | $( 1, 2,12, 6, 9, 4,11, 3, 7, 8,10)$ |
$ 11, 1 $ | $8640$ | $11$ | $( 1,10, 8, 7, 3,11, 4, 9, 6,12, 2)$ |
magma: ConjugacyClasses(G);
Group invariants
Order: | $95040=2^{6} \cdot 3^{3} \cdot 5 \cdot 11$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | no | magma: IsSolvable(G);
| |
Label: | 95040.a | magma: IdentifyGroup(G);
|
Character table: |
2 6 6 1 1 2 4 2 1 1 . . 5 3 5 3 3 3 1 3 1 2 1 1 . . . . . . . . 5 1 . . . . 1 . 1 1 . . . . . . 11 1 . . . . . . . . 1 1 . . . . 1a 2a 3a 6a 3b 2b 6b 5a 10a 11a 11b 4a 8a 4b 8b 2P 1a 1a 3a 3a 3b 1a 3b 5a 5a 11b 11a 2a 4a 2a 4b 3P 1a 2a 1a 2a 1a 2b 2b 5a 10a 11a 11b 4a 8a 4b 8b 5P 1a 2a 3a 6a 3b 2b 6b 1a 2b 11a 11b 4a 8a 4b 8b 7P 1a 2a 3a 6a 3b 2b 6b 5a 10a 11b 11a 4a 8a 4b 8b 11P 1a 2a 3a 6a 3b 2b 6b 5a 10a 1a 1a 4a 8a 4b 8b X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X.2 11 3 2 . -1 -1 -1 1 -1 . . -1 -1 3 1 X.3 11 3 2 . -1 -1 -1 1 -1 . . 3 1 -1 -1 X.4 16 . -2 . 1 4 1 1 -1 A /A . . . . X.5 16 . -2 . 1 4 1 1 -1 /A A . . . . X.6 45 -3 . . 3 5 -1 . . 1 1 1 -1 1 -1 X.7 54 6 . . . 6 . -1 1 -1 -1 2 . 2 . X.8 55 7 1 1 1 -5 1 . . . . -1 -1 -1 -1 X.9 55 -1 1 -1 1 -5 1 . . . . -1 1 3 -1 X.10 55 -1 1 -1 1 -5 1 . . . . 3 -1 -1 1 X.11 66 2 3 -1 . 6 . 1 1 . . -2 . -2 . X.12 99 3 . . 3 -1 -1 -1 -1 . . -1 1 -1 1 X.13 120 -8 3 1 . . . . . -1 -1 . . . . X.14 144 . . . -3 4 1 -1 -1 1 1 . . . . X.15 176 . -4 . -1 -4 -1 1 1 . . . . . . A = E(11)^2+E(11)^6+E(11)^7+E(11)^8+E(11)^10 = (-1-Sqrt(-11))/2 = -1-b11 |
magma: CharacterTable(G);