Show commands:
Magma
magma: G := TransitiveGroup(12, 295);
Group action invariants
Degree $n$: | $12$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $295$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $M_{12}$ | ||
CHM label: | $M(12)$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | yes | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,9,5,12,11,8,2,4)(6,10), (1,11,2,3,4)(5,8,12,6,7) | magma: Generators(G);
|
Low degree resolvents
noneResolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: None
Degree 4: None
Degree 6: None
Low degree siblings
12T295Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{12}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{6}$ | $396$ | $2$ | $6$ | $( 1,12)( 2, 6)( 3, 8)( 4, 9)( 5, 7)(10,11)$ |
2B | $2^{4},1^{4}$ | $495$ | $2$ | $4$ | $( 1, 2)( 3,12)( 5, 9)( 6, 7)$ |
3A | $3^{3},1^{3}$ | $1760$ | $3$ | $6$ | $( 1,10, 4)( 3, 5,11)( 7, 9, 8)$ |
3B | $3^{4}$ | $2640$ | $3$ | $8$ | $( 1, 2,11)( 3,10, 8)( 4, 6,12)( 5, 7, 9)$ |
4A | $4^{2},2^{2}$ | $2970$ | $4$ | $8$ | $( 1,12, 2, 3)( 4, 8)( 5, 6, 9, 7)(10,11)$ |
4B | $4^{2},1^{4}$ | $2970$ | $4$ | $6$ | $( 3,12, 8, 7)( 4,11, 9, 6)$ |
5A | $5^{2},1^{2}$ | $9504$ | $5$ | $8$ | $( 1, 9, 7, 3,10)( 2, 6,12,11, 4)$ |
6A | $6^{2}$ | $7920$ | $6$ | $10$ | $( 1,10, 6,12,11, 2)( 3, 5, 4, 8, 7, 9)$ |
6B | $6,3,2,1$ | $15840$ | $6$ | $8$ | $( 1, 6)( 2, 8,11, 4, 9, 7)( 3, 5,10)$ |
8A | $8,4$ | $11880$ | $8$ | $10$ | $( 1, 9,12, 7, 2, 5, 3, 6)( 4,11, 8,10)$ |
8B | $8,2,1^{2}$ | $11880$ | $8$ | $8$ | $( 1,10, 3, 8, 7,11, 6, 5)( 2,12)$ |
10A | $10,2$ | $9504$ | $10$ | $10$ | $( 1, 6, 3,11, 2, 7,12, 8, 9, 4)( 5,10)$ |
11A1 | $11,1$ | $8640$ | $11$ | $10$ | $( 1, 8, 2, 4, 6, 5, 3,12,11, 9,10)$ |
11A-1 | $11,1$ | $8640$ | $11$ | $10$ | $( 1, 3, 8,12, 2,11, 4, 9, 6,10, 5)$ |
Malle's constant $a(G)$: $1/4$
magma: ConjugacyClasses(G);
Group invariants
Order: | $95040=2^{6} \cdot 3^{3} \cdot 5 \cdot 11$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | no | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 95040.a | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 3A | 3B | 4A | 4B | 5A | 6A | 6B | 8A | 8B | 10A | 11A1 | 11A-1 | ||
Size | 1 | 396 | 495 | 1760 | 2640 | 2970 | 2970 | 9504 | 7920 | 15840 | 11880 | 11880 | 9504 | 8640 | 8640 | |
2 P | 1A | 1A | 1A | 3A | 3B | 2B | 2B | 5A | 3B | 3A | 4A | 4B | 5A | 11A-1 | 11A1 | |
3 P | 1A | 2A | 2B | 1A | 1A | 4A | 4B | 5A | 2A | 2B | 8A | 8B | 10A | 11A1 | 11A-1 | |
5 P | 1A | 2A | 2B | 3A | 3B | 4A | 4B | 1A | 6A | 6B | 8A | 8B | 2A | 11A1 | 11A-1 | |
11 P | 1A | 2A | 2B | 3A | 3B | 4A | 4B | 5A | 6A | 6B | 8A | 8B | 10A | 1A | 1A | |
Type |
magma: CharacterTable(G);