Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $295$ | |
| Group : | $M_{12}$ | |
| CHM label : | $M(12)$ | |
| Parity: | $1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,9,5,12,11,8,2,4)(6,10), (1,11,2,3,4)(5,8,12,6,7) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
NoneResolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: None
Degree 4: None
Degree 6: None
Low degree siblings
12T295Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $495$ | $2$ | $( 1, 8)( 2, 7)( 6,10)(11,12)$ |
| $ 4, 4, 1, 1, 1, 1 $ | $2970$ | $4$ | $( 1, 7, 8, 2)( 6,12,10,11)$ |
| $ 8, 2, 1, 1 $ | $11880$ | $8$ | $( 1,10, 7,11, 8, 6, 2,12)( 4, 5)$ |
| $ 11, 1 $ | $8640$ | $11$ | $( 1,12, 6, 2,10, 7, 4,11, 9, 5, 3)$ |
| $ 11, 1 $ | $8640$ | $11$ | $( 1, 3, 5, 9,11, 4, 7,10, 2, 6,12)$ |
| $ 4, 4, 2, 2 $ | $2970$ | $4$ | $( 1, 7, 8, 2)( 3, 9)( 4, 5)( 6,11,10,12)$ |
| $ 8, 4 $ | $11880$ | $8$ | $( 1,10, 7,12, 8, 6, 2,11)( 3, 5, 9, 4)$ |
| $ 5, 5, 1, 1 $ | $9504$ | $5$ | $( 1, 5,11, 4, 8)( 2,12, 7, 3, 9)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $396$ | $2$ | $( 1, 9)( 2, 5)( 3, 8)( 4, 7)( 6,10)(11,12)$ |
| $ 10, 2 $ | $9504$ | $10$ | $( 1,12, 8, 2, 4, 9,11, 3, 5, 7)( 6,10)$ |
| $ 3, 3, 3, 3 $ | $2640$ | $3$ | $( 1, 8,11)( 2, 7, 6)( 3,12, 9)( 4,10, 5)$ |
| $ 6, 6 $ | $7920$ | $6$ | $( 1, 6, 8, 2,11, 7)( 3, 5,12, 4, 9,10)$ |
| $ 3, 3, 3, 1, 1, 1 $ | $1760$ | $3$ | $( 1, 9, 5)( 3, 4, 8)(10,11,12)$ |
| $ 6, 3, 2, 1 $ | $15840$ | $6$ | $( 1,12, 9,10, 5,11)( 2, 7)( 3, 8, 4)$ |
Group invariants
| Order: | $95040=2^{6} \cdot 3^{3} \cdot 5 \cdot 11$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | Data not available |
| Character table: |
2 6 6 1 1 5 3 4 2 2 5 . . 1 1 3
3 3 1 3 1 . . 1 2 1 . . . . . .
5 1 . . . . . 1 . . . . . 1 1 .
11 1 . . . . . . . . . 1 1 . . .
1a 2a 3a 6a 4a 8a 2b 3b 6b 4b 11a 11b 5a 10a 8b
2P 1a 1a 3a 3a 2a 4a 1a 3b 3b 2a 11b 11a 5a 5a 4b
3P 1a 2a 1a 2a 4a 8a 2b 1a 2b 4b 11a 11b 5a 10a 8b
5P 1a 2a 3a 6a 4a 8a 2b 3b 6b 4b 11a 11b 1a 2b 8b
7P 1a 2a 3a 6a 4a 8a 2b 3b 6b 4b 11b 11a 5a 10a 8b
11P 1a 2a 3a 6a 4a 8a 2b 3b 6b 4b 1a 1a 5a 10a 8b
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 11 3 2 . -1 -1 -1 -1 -1 3 . . 1 -1 1
X.3 11 3 2 . 3 1 -1 -1 -1 -1 . . 1 -1 -1
X.4 16 . -2 . . . 4 1 1 . A /A 1 -1 .
X.5 16 . -2 . . . 4 1 1 . /A A 1 -1 .
X.6 45 -3 . . 1 -1 5 3 -1 1 1 1 . . -1
X.7 54 6 . . 2 . 6 . . 2 -1 -1 -1 1 .
X.8 55 7 1 1 -1 -1 -5 1 1 -1 . . . . -1
X.9 55 -1 1 -1 -1 1 -5 1 1 3 . . . . -1
X.10 55 -1 1 -1 3 -1 -5 1 1 -1 . . . . 1
X.11 66 2 3 -1 -2 . 6 . . -2 . . 1 1 .
X.12 99 3 . . -1 1 -1 3 -1 -1 . . -1 -1 1
X.13 120 -8 3 1 . . . . . . -1 -1 . . .
X.14 144 . . . . . 4 -3 1 . 1 1 -1 -1 .
X.15 176 . -4 . . . -4 -1 -1 . . . 1 1 .
A = E(11)^2+E(11)^6+E(11)^7+E(11)^8+E(11)^10
= (-1-Sqrt(-11))/2 = -1-b11
|