Properties

Label 12T294
Order \(82944\)
n \(12\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $12$
Transitive number $t$ :  $294$
CHM label :  $[S(4)^{3}]S(3)=S(4)wrS(3)$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (3,6,9,12), (6,9), (1,5)(2,10)(4,8)(7,11), (1,5,9)(2,6,10)(3,7,11)(4,8,12)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
6:  $S_3$
12:  $D_{6}$
24:  $S_4$
48:  $S_4\times C_2$
1296:  $S_3\wr S_3$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: $S_3$

Degree 4: None

Degree 6: None

Low degree siblings

18T770, 18T773, 18T776, 18T777, 18T779, 18T780, 18T783, 18T785, 24T16593, 24T16594, 24T16595, 24T16596, 24T16597, 24T16598, 24T16599, 36T19182, 36T19183, 36T19184, 36T19185, 36T19192, 36T19193, 36T19194, 36T19195, 36T19211, 36T19212, 36T19213, 36T19214, 36T19215, 36T19216, 36T19219, 36T19220, 36T19221, 36T19222, 36T19229, 36T19230, 36T19231, 36T19232, 36T19247, 36T19248, 36T19249, 36T19250, 36T19251, 36T19252, 36T19254, 36T19255, 36T19256, 36T19257, 36T19420, 36T19421, 36T19422, 36T19423

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 65 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $82944=2^{10} \cdot 3^{4}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.