Properties

Label 12T293
Order \(46080\)
n \(12\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $12$
Transitive number $t$ :  $293$
CHM label :  $[2^{6}]S(6)=2wrS(6)$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,12), (1,3,5,7,9,11)(2,4,6,8,10,12), (1,3)(2,12)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
720:  $S_6$
1440:  $S_6\times C_2$
23040:  30T937

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: None

Degree 4: None

Degree 6: $S_6$

Low degree siblings

12T293 x 3, 24T14632 x 2, 24T14633 x 2, 24T14634 x 2, 40T18563 x 2, 40T18564 x 2, 40T18573 x 2, 40T18579 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 65 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $46080=2^{10} \cdot 3^{2} \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.